
Homework 2

(Sampled Softmax) We talked about softmax classifer in the class. Suppose there are C classes. A softmax
classifier takes feature vector x ∈ Rd, computes logits

zi = w⊤
i x+ bi,

then predicts its probability of i-th class as

pi =
ezi∑C
j=1 e

zj
,

where wi ∈ Rd, bi ∈ R, i = 1, . . . C are trainable parameters. They are trained by minimizing a cross entropy
loss. Specifically, a datum x with label c incurs training loss

ℓ = − log pc.

And we update the trainable parameters via (stochastic) gradient descent.

1. (10’) Revisit the class notes and derive the gradients, ∂ℓ
∂wi

, ∂ℓ
∂bi

. Express them as function of pi.

2. (10’) The denominator of pi requires to compute C terms. That is, ezj , j = 1, . . . , C. When C is big,
this can incur tremendous computational cost.

Sampled softmax alleviates this by randomly sampling K (K ≪ C) of these terms to approximate pi.
Specifically, we choose a distribution with probabilty mass function q over the C classes. We draw K
class ID’s from q. Denote this set of sampled class ID’s as S, and assume class i itself is excluded from
S. We can then approximate the denominator by

C∑
j=1

ezj ≈ ezi +
1

K

∑
j∈S

qje
zj .

Then pi is approximated by

p̃i =
ezi

ezi + 1
K

∑
j∈S qjezj

.

The approximated training loss is therefore

ℓ̃ = − log p̃c.

Derive the gradient ∂ℓ̃
∂wi

, ∂ℓ̃
∂bi

.

(Linear classifier v.s. MLP) In this exercise, we compare softmax classifier with and without MLP
feature extractor. Please attach all code.

We will use MNIST dataset through out. MNIST are 28 × 28 images of hand written digits (See an
illuatration in Figure 1). The training partition has 60,000 images, and test partition has 10,000 images.
Use the following code snippet to further split the training paritition into a training set and validation set.

import torch

from torchvision import datasets

train_all= datasets.MNIST(’../ data’, train=True , download=True) # 60K images

train_data , val_data = torch.utils.data.random_split(

train_all , [50000 , 10000], torch.Generator ().manual_seed(0)) # train: 50K; val: 10K

test_data = datasets.MNIST(’../ data’, train=False) # test: 10K

1



Figure 1: Examples of images in MNIST dataset. Source: wikipedia

1. (30’) build a 10-class softmax classifier on the images. Train the classifier via storchastic gradient
descent, and report test accuracy.

2. (40’) Insert one hidden layer with 1024 hidden units before the softmax classifier. And use ReLU as
the activation function at the hidden layer. Train and report test accuracy.

3. (10’) Let us count the number of learnable parameters in the above model:

• input-to-hidden-layer weight matrix: 282 × 1024

• input-to-hidden-layer bias: 1024

• softmax classifer weight matrix: 1024× 10

• softmax classifier bias: 10

So the total number of learnable parameter is

282 × 1024 + 1024 + 1024× 10 + 10 = 814, 090.

Now, instead of inserting one hidden layer, we insert L(L ≥ 2) hidden layers, each with equal number
of hidden units. We keep the total learnable parameters at 814, 090. Derive the number of hidden
units per layer. Express it as a function of L.

4. (bonus 50’) Train a MLP model with architecture defined in problem 3, where L = 2, 3, . . . , 8. Get
test accuracy for each L. Note that in problem 2, we already get the accuracy when L = 1. Plot the
accuracy against L, where L = 1, 2, 3, . . . , 8.

2

https://en.wikipedia.org/wiki/MNIST_database

