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Recap of Last Lecture

e Zero Shot Learning * Few Shot Learning
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Recap of Last Lecture

* Multi-task Learning and Meta Learning

learn tasks prfmtk

A7 N
ok -ath

e Works if the tasks are relevant

quickly learn
new task

—R

=




Task Relevance through Feature Similarity

* Consider one model for each task, with same input

[ - | Taska [ t] Task B . Sim(Fy, Fy)?
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Agenda

* Feature Similarity
 Attribution to Input Feature(s)
 Attribution to Training Sample(s)



Motivate

« Compare two sets of representations
F=lfi,.ful,  G=191 -, 9n]
for the same set of inputs [x4, ..., x,]

* Many choices
1
* —2i={fi, gi)?
* But whatif f; and g; are different dimensional?

* Nice if similarity is bounded between 0 and 1

* Also, what if there is some matrix 4, such that F = AG?



Motivate: linear invariance

* If there is some invertible matrix 4, such that g; = Af; forany i
* Any classifier built on f is equivalent to another one builton g
* Vice versa

vy
v A
r I 4

wf

v Gl v -
| v A

- wa g_A_l-
a

- WA™1



Motivate

* |n that sense, features F and G have the same effect

 We want sim(F, G) invariant w.r.t (invertible) linear transform, i.e.,
sim(AF, BG)=sim(F, G)

 Summary: Sim(F, G) is preferred to be

1. Bounded between [0,1]

2. Invariant w.r.t (invertible) linear transforms



Detour: Canonical Correlation Analysis (CCA)

* Find directions in two sets of features that correlates the most

Cartoon from stackexchange



https://stats.stackexchange.com/questions/65692/how-to-visualize-what-canonical-correlation-analysis-does-in-comparison-to-what

Formalize: CCA

 Assume F, G are centered (mean subtracted)

* CCA seeks two directions x, y, applied on F and G, such that
xTZF,Gy }

\/xTZF,Fx\/yTZG,Gy

max {p (x,y) =
X,y

* Massage by leveraging SVD
F =UpApVE and G = U A VS
e Change of variable ¥ = AUl x, § = AGTUgy, then
p(x,y) = ™ Vi Ved
x| 711




Solve for CCA

(o) = 2 e VeY
X, V) = ——t
PO = TR

~

. . & i
* Further introduce x = ) and j = ”%”’

So we are seeking unit-norm vectors X and y Such that

max — _)TVTV -
Ilf||=1,||37||=1{p FVey}

* Run SVD of Vy V; = XOY'
*Xt =X 1]yt =Y 1], 0" = 0y

then p(x,y) = 5C>TVFTVG3-;



Nice Property of CCA

* |n fact, we can show

[p* € [0,1], and is invariant w.r.t invertible linear transforms on F and G]

* p” is a desired a similarity measure!
Recipe:
/1.Run SVD on F and G N
F =UpArVE and G = U AV,
2. Run SVD of V£V, let the singular values be 0;

3. Use 0, or%Zi-;l 67 as the similarity index
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SVCCA (Raghu et. al, 2017)

 Compare layers at training against after trained

* Bottom layer doesn’t change much throughout training

0% trained i 75% trained 100% trained

layer (during training)

Convnet, CIFAR-10

layer (during training)

Resnet, CIFAR-10

Weigtned sveca s |

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0


https://arxiv.org/pdf/1706.05806.pdf

Use SVCCA to Understand training of LMs

Language model

Tt+1 Tag Predictor
[ | SOftmaX SVD(h ) Yt+1
2 O000000O0 > OOOOO
h; [Gososooo] > SVD(h!") SVD ﬁ softmax
—— M LSTM [65600] ¢ h;'
h; LSTM

— M LsT™ + cooocooo] hf'
h§ embedding
embedding

max p(W - SVD h2) V - SVD(R'))

Tt

Figure 1: SVCCA used to compare the layer h? of a language model and layer h'/ of a tagger.

Saphra. et. al, 2019



https://aclanthology.org/N19-1329.pdf

Use SVCCA to Understand training of LMs

* Th ree taggers: _ h=h"" correlations
* POS (part of speech), e.g., noun vs. verb |
* Semantic, e.g., cash (noun) vs. cash (verb)
* topic
LM feature: : e
* more similar to feature for POS tagger S 0% e
. - |~ _pppos
not so much to feature for topic tagger | Lot s
021 SEM
° Why SO? 3 — SEM Eﬁ?i;se)
1 — topic



Another similarity: CKA (Kornblith et. al, 2019)

* We may also ask sim(AF, BG)=sim(F, G) for any rotation matrix
A, B such that AAT = I and BB =1
 Build inter-sample similarity (kernel): assume centered features
ke (L)) = fi fj, ke (0,]) = gi g
* Compute Centered Kernel Alignment (CKA)
(Kp, Kg)

B \/(KF» Kr) \/(KGr Kg)

[r € |0,1], and is invariant w.r.t rotation on F and G ]

r



https://arxiv.org/pdf/1905.00414.pdf

CCA vs CKA

e CKA is more “correct”

 Compare two models with the same architecture, trained from

different initializations
CKA (Linear) SVCCA (p)

0.8 8 0.7
0.7
0.6 6 0.6
0.5 4 0.5
0.4

0.4
0.3 2
0.2 0.3

2 4 6 8
Layer layer

* Corresponding layers should be more similar, but not captured by CCA
Kornblith et. al, 2019
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https://arxiv.org/pdf/1905.00414.pdf

CKA: More Observations

* Layer similarity implies when the model starts to overfit as it grows deeper

1x Depth (94.1%) 2x Depth (95.0% 4x Depth (93.2%) 8x Depth (91.9%)

o 4 1.0
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! 0.1
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Accuracy
o o
> o

1234567809 5 10 15 5 10 15 20 25 30 10 20 30 40 50 60
Layer Layer Layer Layer
Figure 3. CKA reveals when depth becomes pathological. Top: Linear CKA between layers of individual networks of different depths on

the CIFAR-10 test set. Titles show accuracy of each network. Later layers of the 8x depth network are similar to the last layer. Bottom:
Accuracy of a logistic regression classifier trained on layers of the same networks is consistent with CKA.

Kornblith et. al, 2019



https://arxiv.org/pdf/1905.00414.pdf

Using CKA to Understand Transfer Learning

* Transfer from Pretrained Network on ImageNet to X-ray images

 Transfer Learned networks are more similar than those learned from
scratch

Table 1: Feature similarity for different layers of ResNet-50, target domain CHEXPERT

models/layer convl layer1 layer2 layer3 layer4

PT&P 0.6225 04592 02896 0.1877 0.0453
P-T & P-T 0.6710 0.8230 0.6052  0.4089 0.1628

P-T&RI-T  0.0036 0.0011 0.0022 0.0003 0.0808
RI-T & RI-T  0.0016 0.0088 0.0004 0.0004 0.0424

P: pretrained on Imagenet; P-T: transferred to X-ray images; RI-T: learned from scratch on X-ray images

Neyshabur et. al, 2020



https://arxiv.org/pdf/2008.11687.pdf

Agenda

* Feature Similarity
 Attribution to Input Feature(s)
 Attribution to Training Sample(s)



Motivating: Interpreting Deep Models

* How can we trust deep model’s decision?

/ sneeze Flu | Explainer il l
- weight
\ headache headache}
no fatigue no fatigue
age o
Model Data and Prediction Explanation Human makes decision

(Ribeiro et. al, 2016): Explainer (another model) provides insights that help human to
understand deep models


https://arxiv.org/pdf/1602.04938.pdf

Motivating: Explainer as Linear Model

* Linear Models are more Interpretable
RPN d

* Consider y = ).\, a;X;

* |a;| indicates the importance of i-th feature

* Especially when d is small, or many a; = 0

Sy

* Approximate deep network with (locally)
sparse linear model?

}
b f
‘.0~~

§§§
—

Ribeiro et. al, 2016



https://arxiv.org/pdf/1602.04938.pdf

What we want to Achieve

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

Ribeiro et. al, 2016



https://arxiv.org/pdf/1602.04938.pdf

Local Interpretable Model-agnostic Explanations

(abbr. LIME) To explain an input x, with decision f (x) made by network
* Convert to its “interpretable” version x', e.g., super-pixel segmented

Q: Why not just work
on the original image?

e Fit a linear model around x’

Ribeiro et. al, 2016



https://arxiv.org/pdf/1602.04938.pdf

LIME

* Create multiple perturbations around x'
* e.g., +¢& for a super-pixel, denoted as z’
* Input z’ to the network to get decision f(z")

* On the dataset {z;,, f(z;,)} train a sparse linear model

N
1
min NZ'““’Z” — F(Zp)II?

lello<K

* Many solvers: e.g., sklearn.linear model.lasso

Ribeiro et. al, 2016



https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://arxiv.org/pdf/1602.04938.pdf

Weighted Loss

 Down-weigh the loss if s is very big

||§ﬂ(1,r<lxﬁz w(zy, %) e, z,) — f(z) |2

* RBF kernel

, |z, — x||?
w(z,,x) =exp| — — '

 Choice of g2 is not clear




Discussion

* How do we apply LIME for a text classification model?

Algorithm 1 Algorithm 2
Words that A1l considers important: Predicted: Words that A2 considers important: Predicted:
GOD . Atheism Posting| . Atheism
mean Prediction correct: Host Prediction correct:
anyone J J
this
Koresh
through
Document Document
From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp Organization: Verdix Corp
Lines: 8 Lines: 8

Explain the distinct decisions of two text classifiers

* Why not just calculate the gradient w.r.t x?
Ribeiro et. al, 2016



https://arxiv.org/pdf/1602.04938.pdf

Saliency map

* Yes! There are earlier intuitions in Computer Vision
* Consider 1st order Taylor Expansion
of
f@) ~ fx) + o (x—xo)
X
X=X
* e.g. X as input image
 f(x) as network predicted probability of class label

) . 0
* \Visualize of

Xlx=x

Simonyan et. al, 2013



https://arxiv.org/pdf/1312.6034.pdf

Saliency map Examples

Obiject localization using the saliency map. Note: No
Simonyan et. al, 2013 bounding box training data used



https://arxiv.org/pdf/1312.6034.pdf

Discussion

* How to obtain saliency map in a text classifier?

positive

Softmax classifier

-

' ' i ' Look-up embeddings

A fun movie to check out



Revisit Visualization of Feature Maps in Lecture 3

* DeconvNet (Zeiler & Fergus, 2013)



https://arxiv.org/pdf/1311.2901.pdf

DeconvNet (Zeiler & Fergus, 2013)

Layer Above
Reconstruction

Switches

Pooled Maps

Max Unpooling @ O—Ij

AN

Max Pooling

Unpooled Maps Rectified Feature Maps
Rectified Linear AN Rectified Linear
Function </ Function
Rectified Unpooled Maps Feature Maps
Convolutional Convolutional
Filtering {FT} NS Filtering {F}
Recons truction Layer Below Pooled Maps

Max Locations
“Switches”

* Feature maps are smaller than input image
* “Project” Feature map back to pixel space
* Max “unpooling”:

* put back the max value to where it sat

* put O for other locations in the region

* Transposed convolution: * k”


https://arxiv.org/pdf/1311.2901.pdf

DeconvNet Architectu re

Layer Abov
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T
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| |

* Gradient of pooling layer:

d
* Place =5 to where the output sat

* Place O to other locations in the region
e Convolute kT : recall lecture 3
0 _ 9 , . T
oI 00

* DeconvNet computes gradient to
some extent!



Class Activation Mapping (CAM)

* Insert a Global Average Pooling (GAP) Layer before softmax classifier
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Zhou et. al, 2015



https://arxiv.org/pdf/1512.04150.pdf

How GAP works

* frlx, y]: k-th feature map
* Global Average Pooling: 3., ,, fx [, V] fi's

* Class score

5= ZWkak[x»Y] = zfz kak[x':V] =)
ko xy Nz )

X,y
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How CAM works

* Upsample the Class Activation Map to Image size

Trained for classification
only but can achieve
localization!




Grad-CAM

* Weighted average of feature maps at middle layer

Wi fr[x, y]
where
z ds
W —
: 0flx, y]
X,y
e Discussion:

* Show that CAM is a special case of Grad-CAM
* Generalize to text input?

Selvaraju et. al, 2019



https://arxiv.org/pdf/1610.02391.pdf

Agenda

* Feature Similarity
 Attribution to Input Feature(s)
 Attribution to Training Sample(s)



Motivation

* How to identify them?

* Influential training instances
* Influence to a test sample?

5.0
'l
° Model training
% & . alest2
g ... ° b’ * with influential instance
g2 Test1® o -4
.. !.,.’. = = = without influential instance
[ ] ° -
¢
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‘e Y
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® IR ( 1]
o , Py
SO e
([ ]
2 0 2 éll 6 8

Feature x



Influence Function

* Introduced in the 1970s in the field of robust statistics
* Consider an estimator T that acts on a distribution p
* How much does T change if we perturb p

Koh & Liang, 2020, slide adapted from ece739 lecture slides



https://arxiv.org/pdf/1703.04730.pdf
https://course.ece.cmu.edu/~ece739/lectures/18739-2020-spring-lecture-10-influence-functions.pdf

Formalize

* Trained model parameter
6 = arg mgin%f,?zlf(e;zi)

* Perturb a training sample z by additionally weighing € on its loss

A

0. = arg mgin%Z{;lf(H;zi) + &£(0; z)

: 1
* e.g., removing the sample amountsto ¢ = ——
n

* By construction, 8 = 90

 The influence on a test sample Z s )
2(8:;z) — £(8y; 7)



Derivations

A

n
1
0, = argm@in—z (0;z;) + &£(0; z)
) =
* So O, satisfies ,
1 A A
Vg ﬁz (0 z;)+ ¢ ng(Hg;Z) =0
i=1

* Take derivgtive w.r.t. &, and make ¢ = 0

1 ) do,

VgV EZ £(0;; z;) P
1 l=Y1 \ J-

\ . 0 2

Hessian > 0 0,

do,
=0
de

+ Vg‘g(ég; Z) + 8[V9V0£(é8; Z)]




Derivations

) _ -1

dé, 10, 4 ;

- =~ |Ve®Ys 523(90;4) Vg £(60; )
i i= -

\ J
|

H—l

* Influence on test sample 3: ) ) )
2(6:;3) —€(00;3) = (Vot(00;3), 0, — O,

~ —¢€ - Vef(éoi Z)TH_lvé’f(éO; Z)



Practical Meaning

* Influence on test sample z:
0(0;2) — £(80;3) ~ — - Vo t(By; 2) H1Vg2(0y; 2)
. f(ég; Z) — f(éo; z) > (0, harmful perturbation
. 3(98; Z) — f(éo; z) < 0, helpful perturbation
* Removing training sample z & ¢ = _2 )

n
If training set small (small n), big impact

* [gnore Hessian (H~! — I), z close to z, big impact

Cartoon from CS239 slides



https://web.stanford.edu/class/cs329t/slides/lecture_11.pdf

Practice

* Derive the Impact for Logistic Regression

*z=(x,y),and p(y|x) = G(yHTx) Influence due to closeness of labels
* Influence on 2 = (X¢est) Veest):

— G(_YteStQTxteSt) @

Influence of training loss Influence due to closeness of features



Visualize
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Visualize

‘ ‘ Most influential
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Visualize

‘ Most harmful



Visualize

Helpful




Applied to Deep Models

Training image

are helpful (of course)

Test image

surprisingly helpful




Connect to Input Attribution

* Consider perturbing a training sample z to zg

ceg,z=(Y), 2zs = (X5Y)
* Training:

n

A 1 1

Os = argmeingz £(0;z;) + 5[3(9;25) — £(0; 2)]
i=1

* Influence on test sample z,if6 = 0

) .\ d
VoL (80;2) H 1V,Ve8(by; 2) g



Connect to Input Attribution

—VoL(8o;3) HV vgf(eo,z) d6

Label: Fish ‘ Label: Fish

e

A small
perturbation
to one
training
example:

Can change
multiple test
predictions:

Orig (confidence): Dog (97%) Dog (98%) Dog (98%) Dog (99%) Dog (98%)
New (confidence): Fish (97%) Fish (93%) Fish (87%) Fish (60%) Fish (51%)



Connect to Adversarial Attack

* Revisit the adversarial example in 1st lecture:

+.007 x

xTr

“panda” “nematode”
57.7% confidence 8.2% confidence 99.3 % confidence

* V,.J(0,x,y): the steepest direction that change’s network decision
* Influence function traces back to training data!

Goodfellow et. al, 2015



https://arxiv.org/pdf/1412.6572.pdf

