CS7150 Deep Learning

Jiaji Huang

https://jiaji-huang.github.io

03/16/2024

Recap of Last Lecture

Zero Shot Learning

• Few Shot Learning

Given 1 example of 5 classes:

Classify new examples

Text space

Recap of Last Lecture

• Multi-task Learning and Meta Learning

• Works if the tasks are relevant

Task Relevance through Feature Similarity

• Consider one model for each task, with same input

Agenda

- Feature Similarity
- Attribution to Input Feature(s)
- Attribution to Training Sample(s)

Motivate

• Compare two sets of representations $F = [f_1, ..., f_n], \quad G = [g_1, ..., g_n]$

for the same set of inputs $[x_1, ..., x_n]$

- Many choices
 - $\frac{1}{n}\sum_{i=}^{n}\langle f_i, g_i\rangle$?
 - But what if f_i and g_i are different dimensional?
- Nice if similarity is bounded between 0 and 1
- Also, what if there is some matrix A, such that F = AG?

Motivate: linear invariance

- If there is some invertible matrix A, such that $g_i = Af_i$ for any i
- Any classifier built on f is equivalent to another one built on g
- Vice versa

Motivate

- In that sense, features F and G have the same effect
- We want sim(F, G) invariant w.r.t (invertible) linear transform, i.e.,

sim(AF, BG) = sim(F, G)

- Summary: Sim(*F*, *G*) is preferred to be
- 1. Bounded between [0,1]
- 2. Invariant w.r.t (invertible) linear transforms

Detour: Canonical Correlation Analysis (CCA)

• Find directions in two sets of features that correlates the most

Formalize: CCA

- Assume *F*, *G* are centered (mean subtracted)
- CCA seeks two directions x, y, applied on F and G, such that $\max_{x,y} \left\{ \rho(x, y) \triangleq \frac{x^T \Sigma_{F,G} y}{\sqrt{x^T \Sigma_{F,F} x} \sqrt{y^T \Sigma_{G,G} y}} \right\}$
- Massage by leveraging SVD

$$F = U_F \Lambda_F V_F^T \text{ and } G = U_G \Lambda_G V_G^T$$

• Change of variable $\tilde{x} = \Lambda_F U_F^T x$, $\tilde{y} = \Lambda_G U_G^T y$, then
$$\rho(x, y) = \frac{\tilde{x}^T V_F^T V_G \tilde{y}}{\|\tilde{x}\| \|\tilde{y}\|}$$

Solve for CCA

$$\rho(x, y) = \frac{\tilde{x}^T V_F^T V_G \tilde{y}}{\|\tilde{x}\| \|\tilde{y}\|}$$
• Further introduce $\vec{x} = \frac{\tilde{x}}{\|\tilde{x}\|}$, and $\vec{y} = \frac{\tilde{y}}{\|\tilde{y}\|}$, then $\rho(x, y) = \vec{x}^T V_F^T V_G \vec{y}$
So we are seeking unit-norm vectors \vec{x} and \vec{y} Such that
$$\max_{\|\vec{x}\|=1, \|\vec{y}\|=1} \{\rho = \vec{x}^T V_F^T V_G \vec{y}\}$$

• Run SVD of $V_F^T V_G = X \Theta Y^T$

•
$$\vec{x}^* = X[:, 1], \vec{y}^* = Y[:, 1], \rho^* = \Theta_1$$

Nice Property of CCA

• In fact, we can show

 $\rho^* \in [0,1]$, and is invariant w.r.t invertible linear transforms on F and G

• ho^* is a desired a similarity measure!

Recipe:

1. Run SVD on F and G

$$F = U_F \Lambda_F V_F^T$$
 and $G = U_G \Lambda_G V_G^T$

2. Run SVD of $V_F^T V_G$, let the singular values be θ_i

3. Use θ_1 or $\frac{1}{k} \sum_{i=1}^k \theta_i^2$ as the similarity index

SVCCA (Raghu et. al, 2017)

- Compare layers at training against after trained
- Bottom layer doesn't change much throughout training

Use SVCCA to Understand training of LMs

Figure 1: SVCCA used to compare the layer h^2 of a language model and layer $h^{1\prime}$ of a tagger.

Saphra. et. al, 2019

Use SVCCA to Understand training of LMs

• Three taggers:

- POS (part of speech), e.g., noun vs. verb
- Semantic, e.g., cash (noun) vs. cash (verb)
- topic
- LM feature:
 - more similar to feature for POS tagger
 - not so much to feature for topic tagger
- Why so?

Another similarity: CKA (Kornblith et. al, 2019)

- We may also ask sim(AF, BG)=sim(F, G) for any rotation matrix A, B such that $AA^T = I$ and $BB^T = I$
- Build inter-sample similarity (kernel): assume centered features

$$\kappa_F(i,j) = f_i^T f_j, \ \kappa_G(i,j) = g_i^T g_j$$

• Compute Centered Kernel Alignment (CKA) $r = \frac{\langle \kappa_F, \kappa_G \rangle}{\sqrt{\langle \kappa_F, \kappa_F \rangle} \cdot \sqrt{\langle \kappa_G, \kappa_G \rangle}}$

 $r \in [0,1]$, and is invariant w.r.t rotation on F and G

CCA vs CKA

- CKA is more "correct"
- Compare two models with the same architecture, trained from different initializations

• Corresponding layers should be more similar, but not captured by CCA <u>Kornblith et. al, 2019</u>

CKA: More Observations

• Layer similarity implies when the model starts to overfit as it grows deeper

Figure 3. CKA reveals when depth becomes pathological. **Top**: Linear CKA between layers of individual networks of different depths on the CIFAR-10 test set. Titles show accuracy of each network. Later layers of the 8x depth network are similar to the last layer. **Bottom**: Accuracy of a logistic regression classifier trained on layers of the same networks is consistent with CKA.

Kornblith et. al, 2019

Using CKA to Understand Transfer Learning

- Transfer from Pretrained Network on ImageNet to X-ray images
- Transfer Learned networks are more similar than those learned from scratch

models/layer	conv1	layer 1	layer 2	layer 3	layer 4
<u> </u>	0.6225	0.4592	0.2896	0.1877	0.0453
P-T & P-T	0.6710	0.8230	0.6052	0.4089	0.1628
P-T & RI-T	0.0036	0.0011	0.0022	0.0003	0.0808
RI-T & RI-T	0.0016	0.0088	0.0004	0.0004	0.0424

 Table 1: Feature similarity for different layers of ResNet-50, target domain CHEXPERT

P: pretrained on Imagenet; P-T: transferred to X-ray images; RI-T: learned from scratch on X-ray images

Agenda

- Feature Similarity
- Attribution to Input Feature(s)
- Attribution to Training Sample(s)

Motivating: Interpreting Deep Models

• How can we trust deep model's decision?

understand deep models

Motivating: Explainer as Linear Model

- Linear Models are more Interpretable
- Consider $\hat{y} = \sum_{i=1}^{d} \alpha_i x_i$
- $|\alpha_i|$ indicates the importance of *i*-th feature
- Especially when d is small, or many $\alpha_i = 0$
- Approximate deep network with (locally) sparse linear model?

What we want to Achieve

(a) Original Image

(b) Explaining *Electric guitar* (c) Explaining *Acoustic guitar*

(d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

Ribeiro et. al, 2016

Local Interpretable Model-agnostic Explanations

(abbr. LIME) To explain an input x, with decision f(x) made by network

• Convert to its "interpretable" version x', e.g., super-pixel segmented

Q: Why not just work on the original image?

• Fit a linear model around x'

Ribeiro et. al, 2016

LIME

- Create multiple perturbations around x'
 - e.g., $+\varepsilon$ for a super-pixel, denoted as z'
 - Input \mathbf{z}' to the network to get decision $f(\mathbf{z}')$
- On the dataset $\{\mathbf{z}'_n, f(\mathbf{z}'_n)\}$ train a sparse linear model $\min_{\|\boldsymbol{\alpha}\|_0 \leq K} \frac{1}{N} \sum_{n=1}^N \|\langle \boldsymbol{\alpha}, \mathbf{z}'_n \rangle - f(\mathbf{z}'_n)\|^2$
- Many solvers: e.g., <u>sklearn.linear model.lasso</u>

Weighted Loss

- Down-weigh the loss if ε is very big $\min_{\|\alpha\|_0 \le K} \frac{1}{N} \sum_{n=1}^N w(\mathbf{z}'_n, \mathbf{x}) \|\langle \alpha, \mathbf{z}'_n \rangle - f(\mathbf{z}'_n) \|^2$
- RBF kernel

$$w(\mathbf{z}'_n, \mathbf{x}) = \exp\left(-\frac{\|\mathbf{z}'_n - \mathbf{x}\|^2}{\sigma^2}\right)$$

 $= \exp\left(-\frac{\sigma^2}{\sigma^2}\right)$

• Choice of σ^2 is not clear

Discussion

• How do we apply LIME for a text classification model?

Explain the distinct decisions of two text classifiers

• Why not just calculate the gradient w.r.t *x*?

Ribeiro et. al, 2016

Saliency map

- Yes! There are earlier intuitions in Computer Vision
- Consider 1st order Taylor Expansion

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \frac{\partial f}{\partial x}\Big|_{\mathbf{x}=\mathbf{x}_0} (\mathbf{x} - \mathbf{x}_0)$$

- e.g. *x* as input image
- $f(\mathbf{x})$ as network predicted probability of class label
- Visualize $\frac{\partial f}{\partial x}\Big|_{x=x_0}$

Saliency map Examples

Object localization using the saliency map. Note: No bounding box training data used

Simonyan et. al, 2013

Discussion

• How to obtain saliency map in a text classifier?

Revisit Visualization of Feature Maps in Lecture 3

• DeconvNet (Zeiler & Fergus, 2013)

DeconvNet (Zeiler & Fergus, 2013)

- Feature maps are smaller than input image
- "Project" Feature map back to pixel space
- Max "unpooling":
 - put back the max value to where it sat
 - put 0 for other locations in the region
- Transposed convolution: $\star \kappa^T$

DeconvNet Architecture

• Gradient of pooling layer:

- Place $\frac{\partial}{\partial O}$ to where the output sat
- Place 0 to other locations in the region

• Convolute
$$\kappa^T$$
 : recall lecture 3

$$\frac{\partial}{\partial I} = \frac{\partial}{\partial O} \star \kappa^T$$

• DeconvNet computes gradient to some extent!

Class Activation Mapping (CAM)

• Insert a Global Average Pooling (GAP) Layer before softmax classifier

Zhou et. al, 2015

How GAP works

- $f_k[x, y]$: k-th feature map
- Global Average Pooling: $\sum_{x,y} f_k[x, y]$

 f_k 's

How CAM works

• Upsample the Class Activation Map to Image size

Trained for classification only but can achieve localization!

Grad-CAM

• Weighted average of feature maps at middle layer $w_k f_k[x, y]$

where

$$w_k = \sum_{x,y} \frac{\partial s}{\partial f_k[x,y]}$$

- Discussion:
 - Show that CAM is a special case of Grad-CAM
 - Generalize to text input?

Agenda

- Feature Similarity
- Attribution to Input Feature(s)
- Attribution to Training Sample(s)

Motivation

• Influential training instances

- How to identify them?
- Influence to a test sample?
 - Test 1 vs Test 2

Influence Function

- Introduced in the 1970s in the field of robust statistics
- Consider an estimator T that acts on a distribution p
- How much does *T* change if we perturb *p*

Formalize

• Trained model parameter

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; z_i)$$

• Perturb a training sample z by additionally weighing ε on its loss

$$\hat{\theta}_{\varepsilon} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; z_i) + \varepsilon \ell(\theta; z)$$

- e.g., removing the sample amounts to $\varepsilon = -\frac{1}{n}$
- By construction, $\hat{\theta}\equiv\hat{\theta}_{0}$
- The influence on a test sample z is

$$\ell(\hat{\hat{ heta}}_{arepsilon};z) - \ell(\hat{ heta}_{0};z)$$

Derivations

$$\hat{\theta}_{\varepsilon} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; z_i) + \varepsilon \ell(\theta; z)$$

• So $\hat{\theta}_{\varepsilon}$ satisfies

$$\nabla_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{\theta}_{\varepsilon}; z_{i}) + \varepsilon \cdot \nabla_{\theta} \ell(\hat{\theta}_{\varepsilon}; z) = 0$$

• Take derivative w.r.t. ε , and make $\varepsilon \to 0$ $\begin{bmatrix} \nabla_{\theta} \nabla_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{\theta}_{\varepsilon}; z_{i}) \end{bmatrix} \frac{d\hat{\theta}_{\varepsilon}}{d\varepsilon} + \nabla_{\theta} \ell(\hat{\theta}_{\varepsilon}; z) + \varepsilon \begin{bmatrix} \nabla_{\theta} \nabla_{\theta} \ell(\hat{\theta}_{\varepsilon}; z) \end{bmatrix} \frac{d\hat{\theta}_{\varepsilon}}{d\varepsilon} = 0$ $\underset{\text{Hessian} \succ \mathbf{0}}{\stackrel{\theta_{0}}{\longrightarrow}} \frac{\hat{\theta}_{0}}{\hat{\theta}_{0}} = 0$

Derivations

$$\frac{d\hat{\theta}_{\varepsilon}}{d\varepsilon} = -\left[\nabla_{\theta} \otimes \nabla_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{\theta}_{0}; z_{i})\right]^{-1} \cdot \nabla_{\theta} \ell(\hat{\theta}_{0}; z)$$

• Influence on test sample z:

$$\ell(\hat{\theta}_{\varepsilon}; z) - \ell(\hat{\theta}_{0}; z) \approx \langle \nabla_{\theta} \ell(\hat{\theta}_{0}; z), \hat{\theta}_{\varepsilon} - \hat{\theta}_{0} \rangle$$

$$\approx -\varepsilon \cdot \nabla_{\theta} \ell(\hat{\theta}_{0}; z)^{T} H^{-1} \nabla_{\theta} \ell(\hat{\theta}_{0}; z)$$

Practical Meaning

• Influence on test sample *z*:

$$\ell(\hat{\theta}_{\varepsilon};z) - \ell(\hat{\theta}_{0};z) \approx -\varepsilon \cdot \nabla_{\theta} \ell(\hat{\theta}_{0};z)^{T} H^{-1} \nabla_{\theta} \ell(\hat{\theta}_{0};z)$$

- $\ell(\hat{\theta}_{\varepsilon}; z) \ell(\hat{\theta}_{0}; z) > 0$, harmful perturbation
- $\ell(\hat{\theta}_{\varepsilon}; z) \ell(\hat{\theta}_{0}; z) < 0$, helpful perturbation
- Removing training sample $z \Leftrightarrow \varepsilon = -\frac{1}{n}$,

If training set small (small n), big impact

• Ignore Hessian $(H^{-1} \rightarrow I)$, z close to z, big impact

Practice

- Derive the Impact for Logistic Regression
- z = (x, y), and $p(y|x) = \sigma(y\theta^T x)$ Influence due to closeness of labels
- Influence on $z = (\mathbf{x}_{test}, y_{test}):$ - $\sigma(-y_{test}\theta^T \mathbf{x}_{test}) \cdot \sigma(-y\theta^T \mathbf{x}) \cdot \mathbf{x}_{test}^T H_{\theta}^{-1} \mathbf{x} \cdot y_{test} y$

Influence of training loss Influence due to closeness of features

Applied to Deep Models

Test image

Training image

are helpful (of course)

surprisingly helpful

Connect to Input Attribution

• Consider perturbing a training sample z to z_{δ}

• e.g.,
$$z = (x, y), z_{\delta} = (x_{\delta}, y)$$

• Training:

$$\hat{\theta}_{\delta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; z_i) + \frac{1}{n} [\ell(\theta; z_{\delta}) - \ell(\theta; z)]$$

• Influence on test sample z, if $\delta \to 0$

$$-\nabla_{\theta} L(\hat{\theta}_{0};z)^{T} H^{-1} \nabla_{x} \nabla_{\theta} \ell(\hat{\theta}_{0};z) \frac{dx_{\delta}}{d\delta}$$

Connect to Input Attribution

 $-\nabla_{\theta} L(\hat{\theta}_{0}; z)^{T} H^{-1} \nabla_{x} \nabla_{\theta} \ell(\hat{\theta}_{0}; z) \cdot \frac{d x_{\delta}}{d \delta}$

Connect to Adversarial Attack

• Revisit the adversarial example in 1st lecture:

- $\nabla_x J(\theta, x, y)$: the steepest direction that change's network decision
- Influence function traces back to training data!