
CS7150 Deep Learning
Jiaji Huang

https://jiaji-huang.github.io
03/16/2024

Recap of Last Lecture

• Zero Shot Learning • Few Shot Learning

Recap of Last Lecture

• Mul3-task Learning and Meta Learning

• Works if the tasks are relevant

Task Relevance through Feature Similarity

• Consider one model for each task, with same input

Task BTask A
Sim(𝐹!, 𝐹") ?

Agenda

• Feature Similarity
• Attribution to Input Feature(s)
• Attribution to Training Sample(s)

Mo=vate

• Compare two sets of representations
𝐹 = 𝑓!, … , 𝑓" , 𝐺 = [𝑔!, … , 𝑔"]

 for the same set of inputs 𝑥!, … , 𝑥"
• Many choices
• #$∑%&

$ 𝑓%, 𝑔% ?
• But what if 𝑓%	 and 𝑔% are different dimensional?

• Nice if similarity is bounded between 0 and 1
• Also, what if there is some matrix 𝐴, such that 𝐹 = 𝐴𝐺?

Motivate: linear invariance

• If there is some invertible matrix 𝐴, such that 𝑔# = 𝐴𝑓# for any 𝑖
• Any classifier built on 𝑓 is equivalent to another one built on 𝑔
• Vice versa

𝑓

𝑾

𝑾𝑓

⟺

𝑔

𝑾

𝑾𝑨𝑔

𝑨
𝑾𝑨 𝑔

𝑾

𝑾𝑔

⟺

𝑓

𝑾

𝑾𝑨#$𝑓

𝑨#$
𝑾𝑨#$

Motivate

• In that sense, features 𝐹 and 𝐺 have the same effect
• We want sim(𝐹, 𝐺) invariant w.r.t (invertible) linear transform, i.e.,

sim(𝐴𝐹, 𝐵𝐺)=sim(𝐹, 𝐺)
• Summary: Sim(𝐹, 𝐺) is preferred to be
1. Bounded between [0,1]
2. Invariant w.r.t (invertible) linear transforms

Detour: Canonical Correla=on Analysis (CCA)

• Find directions in two sets of features that correlates the most

Cartoon from stackexchange

https://stats.stackexchange.com/questions/65692/how-to-visualize-what-canonical-correlation-analysis-does-in-comparison-to-what

Formalize: CCA

• Assume 𝐹, 𝐺 are centered (mean subtracted)
• CCA seeks two directions 𝑥, 𝑦, applied on 𝐹 and 𝐺, such that

max
$,% 𝜌(𝑥, 𝑦) ≜

𝑥&Σ',)𝑦
𝑥&Σ','𝑥 𝑦&Σ),)𝑦

• Massage by leveraging SVD
𝐹 = 𝑈'Λ'𝑉'& and 𝐺 = 𝑈)Λ)𝑉)&

• Change of variable <𝑥 = Λ'𝑈'&𝑥, <𝑦 = Λ)𝑈)&𝑦, then

𝜌 𝑥, 𝑦 =
<𝑥&𝑉'&𝑉) <𝑦
<𝑥 <𝑦

Solve for CCA

𝜌 𝑥, 𝑦 =
<𝑥&𝑉'&𝑉) <𝑦
<𝑥 <𝑦

• Further introduce �⃗� = *$
*$

, and �⃗� = *%
*%

, then 𝜌 𝑥, 𝑦 = �⃗�&𝑉'&𝑉)�⃗�

So we are seeking unit-norm vectors �⃗� and �⃗� Such that
max

$⃗ ,!, % ,!
𝜌 = �⃗�&𝑉'&𝑉)�⃗�

• Run SVD of 𝑉'&𝑉) = 𝑋Θ𝑌&

• �⃗�∗ = 𝑋 : , 1 , �⃗�∗ = 𝑌 : , 1 , 𝜌∗ = Θ!

Nice Property of CCA

• In fact, we can show
𝜌∗ ∈ [0,1] , and is invariant w.r.t inver3ble linear transforms on 𝐹 and 𝐺
• 𝜌∗ is a desired a similarity measure!
Recipe:
1. Run SVD on 𝐹 and 𝐺

𝐹 = 𝑈'Λ'𝑉'& and 𝐺 = 𝑈)Λ)𝑉)&

2. Run SVD of 𝑉'&𝑉) , let the singular values be 𝜃#
3. Use 𝜃! or !

.
∑#,!. 𝜃#/ as the similarity index

SVCCA (Raghu et. al, 2017)

• Compare layers at training against after trained
• Bottom layer doesn’t change much throughout training

https://arxiv.org/pdf/1706.05806.pdf

Use SVCCA to Understand training of LMs

Saphra. et. al, 2019

https://aclanthology.org/N19-1329.pdf

Use SVCCA to Understand training of LMs

• Three taggers:
• POS (part of speech), e.g., noun vs. verb
• Semantic, e.g., cash (noun) vs. cash (verb)
• topic

• LM feature:
• more similar to feature for POS tagger
• not so much to feature for topic tagger

• Why so?

Another similarity: CKA (Kornblith et. al, 2019)

• We may also ask sim(𝐴𝐹, 𝐵𝐺)=sim(𝐹, 𝐺) for any rota3on matrix
 𝐴, 𝐵 such that 𝐴𝐴& = 𝐼 and 𝐵𝐵& = 𝐼

• Build inter-sample similarity (kernel): assume centered features
𝜅' 𝑖, 𝑗 = 𝑓#&𝑓0, 𝜅) 𝑖, 𝑗 = 𝑔#&𝑔0

• Compute Centered Kernel Alignment (CKA)

𝑟 =
𝜅' , 𝜅)

𝜅' , 𝜅' I 𝜅) , 𝜅)
𝑟 ∈ [0,1] , and is invariant w.r.t rota3on on 𝐹 and 𝐺

https://arxiv.org/pdf/1905.00414.pdf

CCA vs CKA

• CKA is more “correct”
• Compare two models with the same architecture, trained from

different initializations

• Corresponding layers should be more similar, but not captured by CCA
layer

Kornblith et. al, 2019

https://arxiv.org/pdf/1905.00414.pdf

CKA: More Observations

• Layer similarity implies when the model starts to overfit as it grows deeper

Kornblith et. al, 2019

https://arxiv.org/pdf/1905.00414.pdf

Using CKA to Understand Transfer Learning

• Transfer from Pretrained Network on ImageNet to X-ray images
• Transfer Learned networks are more similar than those learned from

scratch

Neyshabur et. al, 2020

P: pretrained on Imagenet; P-T: transferred to X-ray images; RI-T: learned from scratch on X-ray images

https://arxiv.org/pdf/2008.11687.pdf

Agenda

• Feature Similarity
• Attribution to Input Feature(s)
• Attribution to Training Sample(s)

Motivating: Interpreting Deep Models

• How can we trust deep model’s decision?

(Ribeiro et. al, 2016): Explainer (another model) provides insights that help human to
understand deep models

https://arxiv.org/pdf/1602.04938.pdf

Mo=va=ng: Explainer as Linear Model

• Linear Models are more Interpretable
• Consider J𝑦 = ∑#,!1 𝛼#𝑥#
• 𝛼# indicates the importance of 𝑖-th feature
• Especially when 𝑑 is small, or many 𝛼# = 0
• Approximate deep network with (locally)

sparse linear model?

Ribeiro et. al, 2016

https://arxiv.org/pdf/1602.04938.pdf

What we want to Achieve

Ribeiro et. al, 2016

https://arxiv.org/pdf/1602.04938.pdf

Local Interpretable Model-agnostic Explanations

(abbr. LIME) To explain an input 𝒙, with decision 𝑓(𝒙) made by network
• Convert to its “interpretable” version 𝒙2, e.g., super-pixel segmented

• Fit a linear model around 𝒙2

Ribeiro et. al, 2016

Q: Why not just work
on the original image?

https://arxiv.org/pdf/1602.04938.pdf

LIME

• Create multiple perturbations around 𝒙2
• e.g., +𝜀 for a super-pixel, denoted as 𝒛,
• Input 𝒛, to the network to get decision 𝑓(𝒛,)

• On the dataset 𝒛"2 , 𝑓(𝒛"2) train a sparse linear model

min
𝜶 !45

1
𝑁
R
",!

6

𝜶, 𝒛"2 − 𝑓(𝒛"2) /

• Many solvers: e.g., sklearn.linear_model.lasso

Ribeiro et. al, 2016

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://arxiv.org/pdf/1602.04938.pdf

Weighted Loss

• Down-weigh the loss if 𝜀 is very big

min
𝜶 !45

1
𝑁
R
",!

6

𝑤(𝒛"2 , 𝒙) 𝜶, 𝒛"2 − 𝑓(𝒛"2) /

• RBF kernel

𝑤 𝒛"2 , 𝒙 = exp −
𝒛"2 − 𝒙 /

𝜎/

• Choice of 𝜎/ is not clear

Discussion

• How do we apply LIME for a text classification model?

• Why not just calculate the gradient w.r.t 𝒙?
Explain the distinct decisions of two text classifiers

Ribeiro et. al, 2016

https://arxiv.org/pdf/1602.04938.pdf

Saliency map

• Yes! There are earlier intuitions in Computer Vision
• Consider 1st order Taylor Expansion

𝑓 𝒙 ≈ 𝑓 𝒙7 + \
𝜕𝑓
𝜕𝑥 𝒙,𝒙!

(𝒙 − 𝒙7)

• e.g. 𝒙 as input image
• 𝑓 𝒙 as network predicted probability of class label

• Visualize ^9:
9$ 𝒙,𝒙!

Simonyan et. al, 2013

https://arxiv.org/pdf/1312.6034.pdf

Saliency map Examples

Object localization using the saliency map. Note: No
bounding box training data used Simonyan et. al, 2013

https://arxiv.org/pdf/1312.6034.pdf

Discussion

• How to obtain saliency map in a text classifier?

transformer

Look-up embeddings

A fun movie to check out

positive

Softmax classifier

Revisit Visualiza=on of Feature Maps in Lecture 3

• DeconvNet (Zeiler & Fergus, 2013)

https://arxiv.org/pdf/1311.2901.pdf

DeconvNet (Zeiler & Fergus, 2013)

• Feature maps are smaller than input image
• “Project” Feature map back to pixel space
• Max “unpooling”:
• put back the max value to where it sat
• put 0 for other locations in the region

• Transposed convolution: ⋆ 𝜅!

https://arxiv.org/pdf/1311.2901.pdf

DeconvNet Architecture

• Gradient of pooling layer:
• Place --.	to where the output sat
• Place 0 to other locations in the region

• Convolute 𝜅& : recall lecture 3
9
9;
= 9

9<
⋆ 𝜅&

• DeconvNet computes gradient to
some extent!

Class Activation Mapping (CAM)

• Insert a Global Average Pooling (GAP) Layer before softmax classifier

Zhou et. al, 2015

https://arxiv.org/pdf/1512.04150.pdf

How GAP works

• 𝑓.[𝑥, 𝑦]: 𝑘-th feature map
• Global Average Pooling: ∑$,% 𝑓.[𝑥, 𝑦]
• Class score

𝑠 =R
.

𝑤.R
$,%

𝑓.[𝑥, 𝑦] =R
$,%

R
.

𝑤.𝑓.[𝑥, 𝑦]

𝑓!’s

𝑠

How CAM works

• Upsample the Class Activation Map to Image size

Trained for classification
only but can achieve
localization!

Grad-CAM

• Weighted average of feature maps at middle layer
𝑤.𝑓.[𝑥, 𝑦]

 where

𝑤. =R
$,%

𝜕𝑠
𝜕𝑓.[𝑥, 𝑦]

• Discussion:
• Show that CAM is a special case of Grad-CAM
• Generalize to text input?

Selvaraju et. al, 2019

https://arxiv.org/pdf/1610.02391.pdf

Agenda

• Feature Similarity
• Attribution to Input Feature(s)
• Attribution to Training Sample(s)

Motivation

• Influential training instances • How to identify them?
• Influence to a test sample?
 Test 1 vs Test 2

Test 2
Test 1

Influence Function

• Introduced in the 1970s in the field of robust statistics
• Consider an estimator 𝑇 that acts on a distribution 𝑝
• How much does 𝑇 change if we perturb 𝑝

Koh & Liang, 2020, slide adapted from ece739 lecture slides

https://arxiv.org/pdf/1703.04730.pdf
https://course.ece.cmu.edu/~ece739/lectures/18739-2020-spring-lecture-10-influence-functions.pdf

Formalize

• Trained model parameter
 d𝜃 = argmin

=

!
"
∑#,!" ℓ(𝜃; 𝑧#)

• Perturb a training sample 𝑧 by additionally weighing 𝜀 on its loss
 d𝜃> = argmin

=

!
"
∑#,!" ℓ(𝜃; 𝑧#) + 𝜀ℓ(𝜃; 𝑧)

• e.g., removing the sample amounts to 𝜀 = − !
"

• By construction, d𝜃 ≡ d𝜃7
• The influence on a test sample 𝓏 is

ℓ d𝜃>; 𝓏 − ℓ d𝜃7; 𝓏

Derivations

d𝜃> = argmin
=

1
𝑛
R
#,!

"

ℓ(𝜃; 𝑧#) + 𝜀ℓ(𝜃; 𝑧)

• So d𝜃> sa3sfies

∇=
1
𝑛
R
#,!

"

ℓ(d𝜃>; 𝑧#) + 𝜀 I ∇=ℓ d𝜃>; 𝑧 = 0

• Take deriva3ve w.r.t. 𝜀, and make 𝜀 → 0

∇=∇=
1
𝑛
R
#,!

"

ℓ(d𝜃>; 𝑧#)
𝑑 d𝜃>
𝑑𝜀

+ ∇=ℓ d𝜃>; 𝑧 + 𝜀 ∇=∇=ℓ d𝜃>; 𝑧
𝑑 d𝜃>
𝑑𝜀

= 0

0Hessian ≻ 𝟎 1𝜃%
1𝜃%

Derivations

𝑑 d𝜃>
𝑑𝜀

= − ∇=⨂∇=
1
𝑛
R
#,!

"

ℓ(d𝜃7; 𝑧#)
?!

I ∇= ℓ d𝜃7; 𝑧

• Influence on test sample 𝓏:
ℓ d𝜃>; 𝓏 − ℓ d𝜃7; 𝓏 ≈ ∇=ℓ d𝜃7; 𝓏 , d𝜃> − d𝜃7

 ≈ −𝜀 I ∇=ℓ d𝜃7; 𝓏
&
𝑯?!∇=ℓ d𝜃7; 𝑧

𝑯#$

Prac=cal Meaning

• Influence on test sample 𝓏:
ℓ d𝜃>; 𝓏 − ℓ d𝜃7; 𝓏 ≈ −𝜀 I ∇=ℓ d𝜃7; 𝓏

&𝑯?!∇=ℓ d𝜃7; 𝑧
• ℓ d𝜃>; 𝓏 − ℓ d𝜃7; 𝓏 > 0, harmful perturbation
• ℓ d𝜃>; 𝓏 − ℓ d𝜃7; 𝓏 < 0, helpful perturbation

• Removing training sample 𝑧 ⟺ 𝜀 = − !
"

 ,

 If training set small (small 𝑛), big impact
• Ignore Hessian (𝑯?! → 𝑰), 𝓏 close to 𝑧, big impact

Cartoon from CS239 slides

https://web.stanford.edu/class/cs329t/slides/lecture_11.pdf

Practice

• Derive the Impact for Logistic Regression
• 𝑧 = (𝒙, 𝑦), and 𝑝 𝑦 𝑥 = 𝜎 𝑦𝜃&𝒙
• Influence on 𝓏 = (𝒙@AB@ , 𝑦@AB@):
− 𝜎 −𝑦@AB@𝜃&𝒙@AB@ ⋅ 𝜎 −𝑦𝜃&𝒙 ⋅ 𝒙@AB@& 𝐻	=?!𝒙 I 𝑦@AB@𝑦

Influence of training loss Influence due to closeness of features

Influence due to closeness of labels

Visualize

Visualize

Most influential

Visualize

Most harmful

Visualize

Helpful

Applied to Deep Models

are helpful (of course)

surprisingly helpful

Training image

Connect to Input A]ribu=on

• Consider perturbing a training sample 𝑧 to 𝑧D
• e.g., 𝑧 = (𝒙, 𝑦), 𝑧D = (𝒙D , 𝑦)
• Training:

d𝜃D = argmin
=

1
𝑛
R
#,!

"

ℓ(𝜃; 𝑧#) +
1
𝑛
ℓ 𝜃; 𝑧D − ℓ 𝜃; 𝑧

• Influence on test sample 𝓏, if 𝛿 → 0

−∇=𝐿 d𝜃7; 𝓏
&	
𝑯?!∇𝒙∇=ℓ d𝜃7; 𝑧

𝑑𝒙D
𝑑𝛿

Connect to Input Attribution

−∇=𝐿 d𝜃7; 𝓏
&	
𝑯?!∇𝒙∇=ℓ d𝜃7; 𝑧

	
I
𝑑𝒙D
𝑑𝛿

Connect to Adversarial Attack

• Revisit the adversarial example in 1st lecture:

• ∇𝒙𝐽(𝜃, 𝒙, 𝑦): the steepest direction that change’s network decision
• Influence function traces back to training data!

Goodfellow et. al, 2015

https://arxiv.org/pdf/1412.6572.pdf

