CS7150 Deep Learning

Jiaji Huang

https://jiaji-huang.github.io

03/02/2024

Announcement

Start to think about class project

- Individual or team of two
- Before next lecture, notify TA:
 - your team
 - your project topic, describe what you are going to do
- Project midterm presentation on 03/30

Recap of 1st half

- Architectures
 - Conv nets
 - RNN, LSTM, transformer
 - Encoder-Decoder
- Applications
 - Vision: Image Classification, object detection
 - NLP: word embeddings, language understanding, machine translation
 - Speech: ASR

Recap of 1st half

- Concepts
 - Bias-variance trade-off
- Techniques
 - Optimization (beyond SGD)
 - normalizations
 - Regularization
- Learning Paradigms
 - Transfer learning
 - (self-supervised) Pretrain + finetune

Recap: Pretrain + finetune in BERT

- Pretrain: Masked LM + NSP
- Finetune: task specific

- Similar to transfer learning we saw in computer vision
- Finetuning is feasible if you have 1-2 middle-end GPU(s), e.g., on Colab

Scale of Language Models: # parameters

Sizes linear to scale. Selected highlights only. All models are available. All models are Chinchilla-aligned (20:1 tokens:parameters) https://lifearchitect.ai/chinchilla/ All 200+ models: https://lifearchitect.ai/models-table/. Alan D. Thompson. 2023-2024.

Solution LifeArchitect.ai/models

Art from lifearchitect.ai

Scale of (pre-)training corpus size

Illustration from <u>babyIm</u>

How could a graduate student involve?

- Pretraining (??)
- Finetuning (yes!)

• Model hub is very rich

Hugging Face Q Search models, datasets, users	Models = Datasets Spaces
Tasks Libraries Datasets Languages Licenses Other	Models 526,893 Filter by name
Q Filter Tasks by name	G google/gemma-7h
Multimodal	Text Generation • Updated about 3 hours ago • \pm 142k • \heartsuit 1.55k
Image + Text to Text (VLLMs) Visual Question Answering	
Document Question Answering	G google/gemma-7b-it ▷ Text Generation • Updated 5 days ago • ± 53.4k • ♡ 746

• Many APIs

- Standardized model architectures for many tasks
- Training pipeline
- Utility functions: dataset loading, evaluation metrics,

- Install via pip install transformers
- Load dataset

>>> from datasets import load_dataset

```
>>> dataset = load_dataset("yelp_review_full")
>>> dataset["train"][100]
{'label': 0,
    'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly.
```

• Tokenize

```
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> def tokenize_function(examples):
... return tokenizer(examples["text"], padding="max_length", truncation=True)
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
```

• Build the task-specific model "head"

>> from transformers import AutoModelForSequenceClassification

>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-cased", num_labels=5)

• Finetune (supervised training)

>>> from transformers import TrainingArguments, Trainer

>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")

• Finetune (supervised training)

- >>> trainer = Trainer(
- ... model=model,
- ... args=training_args,
- ... train_dataset=small_train_dataset,
- ... eval_dataset=small_eval_dataset,
- ... compute_metrics=compute_metrics,
- ...)

• Train

>>> trainer.train()

Issues with Finetuning

• Update top layer(s): may be suboptimal

• Update all layers: costly

Issues with Finetuning

- Even if we can afford full finetuning
- Imaging you are serving many tasks
- Each has its own version of finetuned full model!

Agenda

- Parameter Efficient Fine-Tuning (PEFT)
- In-context Learning
- Instruction Finetuning
- Reinforcement Learning from Human Feedback (RLHF)

Adaptor

- Down project to m < d
- Then up project to d
- # new parameter to tune

= 2md + m + d

 If finetune the transformer layer itself:

parameters = $O(d^2)$

Adaptor

- Discussion:
 - Interpret the result
 - Drawback?

LoRA

- Keep dense matrix W untouched
- Learn A, B (with smaller inner dimension), add BA to W
- Each task has its own {A, B}

Agenda

- Parameter Efficient Fine-Tuning (PEFT)
- In-context Learning
- Instruction Finetuning
- Reinforcement Learning from Human Feedback (RLHF)

When Language Models scale up

e.g., recap of <u>GPT-2</u>

Language Models are Unsupervised Multitask Learners

Alec Radford *1 Jeffrey Wu *1 Rewon Child 1 David Luan 1 Dario Amodei **1 Ilya Sutskever **1

- Same architecture as GPT-1
- but trained on more data (4G->40G)
- and more parameters (117M->1.5B)

Surprisingly handles task in a zero-shot way

• No additional example, no gradient updates

Apply GPT-2 in zero-shot fashion

- Frame task as language modeling
- e.g., <u>LAMBDA dataset</u> for language understanding

Context: He shook his head, took a step back and held his hands up as he tried to smile without losing a cigarette. "Yes you can," Julia said in a reassuring voice. "I 've already focused on my friend. You just have to click the shutter, on top, here."

Target sentence: He nodded sheepishly, through his cigarette away and took the _____.

Target word: camera

	LAMBADA	LAMBADA
	(PPL)	(ACC)
SOTA	99.8	59.23
11 7M	35.13	45.99
345M	15.60	55.48
762M	10.87	60.12
1542M	8.63	63.24

Apply GPT-2 in zero-shot fashion

- Sometimes we need to design the prompt creatively (prompt engineering)
- e.g., text summarization task, construct prompt as

[long text to be summarized] + TL;DR:

• Then ask the model to generate continuation

		R-1	R-2	R-L	R-AVG
Supervised methods	Bottom-Up Sum	41.22	18.68	38.34	32.75
	Lede-3	40.38	17.66	36.62	31.55
	Seq2Seq + Attn	31.33	11.81	28.83	23.99
	GPT-2 TL; DR:	29.34	8.27	26.58	21.40
	Random-3	28.78	8.63	25.52	20.98
	GPT-2 no hint	21.58	4.03	19.47	15.03

GPT-3

- Trained on more data (40G->600G)
- More parameters (1.5B->175B)

Language Models are Few-Shot Learners

Tom B. Bro	B. Brown* Benjamin Mann*		k Ryder* Me	lanie Subbiah*
Jared Kaplan †	Prafulla Dhariwal	Arvind Neelakanta	n Pranav Shyam	Girish Sastry
Amanda Askell	Sandhini Agarwal	Ariel Herbert-Voss	Gretchen Kruege	r Tom Henighan
Rewon Child	Aditya Ramesh	Daniel M. Ziegler	Jeffrey Wu	Clemens Winter
Christopher He	esse Mark Cher	Eric Sigler	Mateusz Litwin	Scott Gray
Benjar	nin Chess	Jack Clark	Christophe	r Berner
Sam McCan	dlish Alec H	Radford Ilya	Sutskever	Dario Amodei

GPT-3

- Proposed In-context Learning, aka prompting
- Input: instruction + examples (zero to a few) + problem to be solved
- Output: answer to the problem
- No gradient updates like conventional finetuning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

GPT-3 on <u>SuperGLUE</u> Benchmark

- A few sub-tasks of SuperGLUE
 - Choice of Plausible Alternatives (COPA): example

Premise: The man broke his toe. What was the CAUSE of this? Alternative 1: He got a hole in his sock. Alternative 2: He dropped a hammer on his foot.

Boolean Questions (BoolQ)
 Input: a paragraph and a question
 Output: yes or no

GPT-3

Left: Bigger is better; Right: more example is better

Discussion

- Why it seems to work?
 - There are similar patterns in the huge training data

"I'm not the cleverest man in the world, but like they say in French: Je ne suis pas un imbecile [I'm not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate in the riding of Joliette, wrote in French: "Mentez mentez, il en restera toujours quelque chose," which translates as, "Lie lie and something will always remain."

"I hate the word '**perfume**," Burr says. 'It's somewhat better in French: '**parfum**.' From GPT-2 paper: Examples of naturally occurring demonstrations of En-Fr pairs in webText training set

- Would there be a better trigger than "TL; DR:"?
 - Learn it? But gradient back-prop doesn't work on discrete token space

Prefix Tuning

Prefix-Tuning: Optimizing Continuous Prompts for Generation

Xiang Lisa Li Stanford University xlisali@stanford.edu Percy Liang Stanford University pliang@cs.stanford.edu

- Freeze the pretrained model
- Learn a prefix for each task
- Prefixes are token embeddings
- Only ~0.1% parameters to be updated! (adaptor ~3%)

Prefix Tuning

- Decoder model: x -> y
- Reformatting into [prefix; x] -> y
- Where prefix is of length L
- Learn the prefix embedding matrix ($L \times d$)

Prefix Tuning

• enc-dec models, reformatting to [prefix; x; prefix'] -> y

Results

• Evaluate on table-to-text task

Table: name[Clowns] customerrating[1 out of 5] eatType[coffee shop] food[Chinese] area[riverside] near[Clare Hall]

Textual Description: Clowns is a coffee shop in the riverside area near Clare Hall that has a rating 1 out of 5 . They serve Chinese food .

BLEU scores: visualization from cos597G slides

More Comparisons, Ablations

• Less data hungry than adaptor finetuning

• Sweet spot of *L*

Another Challenge for Prompting

- Multi-step reasoning
 - Math:

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

• Common sense

Q: Sammy wanted to go to where the people were. Where might he go? Options: (a) race track (b) populated areas (c) desert (d) apartment (e) roadblock

Chain of Thoughts Prompting

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Wei et. al, 2022

Chain of Thoughts (CoT) Prompting

"zero-shot" CoT

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Do we even need examples of reasoning? Can we just ask the model to reason through things?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Kojima et. al 2022, slides adapted from CS224n

"zero-shot" CoT

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step. There are 16 balls in total. Half of the balls are golf balls. That means there are 8 golf balls. Half of the golf balls are blue. That means there are 4 blue golf balls.

"zero-shot" CoT

	MultiArith	GSM8K
Zero-Shot	17.7	10.4
Few-Shot (2 samples)	33.7	15.6
Few-Shot (8 samples)	33.8	15.6
Zero-Shot-CoT	Huge improvement 78.7	40.7
Few-Shot-CoT (2 samples)	84.8	41.3
Few-Shot-CoT (4 samples : First) (*1)	More example still better $-$ 89.2	-
Few-Shot-CoT (4 samples : Second) (*1)	90.5	-
Few-Shot-CoT (8 samples)	-93.0	48.7
Zero-Plus-Few-Shot-CoT (8 samples) (*2)	92.8	51.5

Agenda

- Parameter Efficient Fine-Tuning (PEFT)
- In-context Learning
- Instruction Finetuning
- Reinforcement Learning from Human Feedback (RLHF)

LM doesn't understand User's intent

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION GPT-3 Explain the theory of gravity to a 6 year old. Explain the theory of relativity to a 6 year old in a few sentences. Explain the big bang theory to a 6 year old. Explain evolution to a 6 year old.

Example from <u>CS288 slides</u>

Instruction Finetuning

• Train on (many) tasks that involve Instructions

Chung et. al, 2022

Differ from Previous finetuning

Differ from Previous finetuning

Detour a bit: Task-level Generalization

Meta Learning

- After being trained many tasks
- The model won't need many training samples for a new task
- It is also possible to
- Select models trained on "representative tasks" (Huang et. al, 2021)
- Create stronger model ensemble

Back to Instruction Finetuning

- 62 NLP datasets
- 12 task clusters
- Finetuned model is called FLAN (Finetuned LAnguage Net)

Template

• Generate many instruction templates for each task

Slides adapted from Wei's talk

Examples

<u>Chung et. al, 2022</u>

Gains

- Benefit many pretrained model
- Bigger gain as model size grows

Params	Model	Norm. avg.
80M	T5-Small Flan-T5-Small	-9.2 -3.1 (+6.1)
2 50M	T5 -Base Flan-T5-Base	-5.1 6.5 (+11.6)
780M	T5-Large Flan-T5-Large	-5.0 13.8 (+18.8)
3B	T5-XL Flan-T5-XL	-4.1 19.1 (+23.2)
11B	T5-XXL Flan-T5-XXL	-2.9 23.7 (+26.6)

Agenda

- Parameter Efficient Fine-Tuning (PEFT)
- In-context Learning
- Instruction Finetuning
- Reinforcement Learning from Human Feedback (RLHF)

We want the LM to be

- Smart enough (instruction finetuning helps)
- But also
 - Friendly
 - Peaceful (avoid answer "how to make a bomb")
 - Politically correct
 - ...

Put Human's Opinion into the Loop

- E.g., summarization task
- Imagine for any summary, we can get human opinion score (reward)

overturn unstable objects.	$\substack{s_1\\R(s_1)=8.0}$	S_2 $R(s_2) = 1.2$
Sall Flancisco	but no injuries.	wildfires.
San Francisco	property damage,	earthquakes and
earthquake shook the	There was minor	prone to
A magnitude 4.2	San Francisco.	good weather but is
SAN FRANCISCO, California (CNN)	An earthquake hit	The Bay Area has

• Maximize the reward over many generated summaries

Example from <u>CS288 slides</u>

Formalize a bit

- Treat LM as some distribution $p_{\theta}(s)$ over all possible summaries
- Maximize average reward over many generated summaries $\max_{\theta} \mathbb{E}_{s \sim p_{\theta}(s)}[R(s)]$
- Different from the objective we saw before, why?
- Cannot be solved by SGD, but by policy gradient

Policy Gradient Descent

$$\frac{\partial \mathbb{E}_{s \sim p_{\theta}(s)}[R(s)]}{\partial \theta} = \frac{\partial}{\partial \theta} \int R(s)p_{\theta}(s)ds$$
$$= \int R(s)\frac{\partial p_{\theta}(s)}{\partial \theta}ds$$
$$= \int R(s)\frac{1}{p_{\theta}(s)} \cdot \frac{\partial p_{\theta}(s)}{\partial \theta} \cdot p_{\theta}(s)ds$$
$$= \mathbb{E}_{s \sim m} p_{\theta}(s)[R(s) \cdot \nabla \ln p_{\theta}(s)]$$
$$\approx \frac{1}{m} \sum_{i=1}^{m} R(s_{i}) \cdot \nabla \ln p_{\theta}(s_{i})$$

Note: The actual algorithm is used is PPO. We will revisit later!

• Sample summaries s_i 's from current $p_{\theta}(s)$

On the Reward Function R(s)

>

- If we simply ask for numeric scores
 - hard to calibrate
 - costly
 - Human annotators suffer 😕
- Instead we only ask for comparison

An earthquake hit San Francisco. There was minor property damage, but no injuries.

inju **S**1 A 4.2 magnitude earthquake hit San Francisco, resulting in massive damage.

 S_3

The Bay Area has
good weather but is
prone to
earthquakes and
wildfires.

 S_2

Example from <u>CS288 slides</u>

Learn a function R(s)

• Bradley-Terry Model

$$p(s_i > s_j) = \frac{e^{R(s_i)}}{e^{R(s_i)} + e^{R(s_j)}} = \frac{1}{1 + e^{R(s_j) - R(s_i)}} = \sigma(R(s_i) - R(s_j))$$

- Parameterize the R(s; w) as some network
- A binary classifier on event $s_i \leq s_j$

• Denote
$$y_{i,j} = 1$$
 if $s_i > s_j$ else -1
$$\max_{w} \sum_{i,j} \log \sigma \left(y_{i,j} \cdot \left(R(s_i; w) - R(s_j; w) \right) \right)$$

Put together: Instruction finetuning + RLHF

Figure from <u>Ouyang et. al, 2022</u>

Further Gain by RLHF

Stiennon et. al, 2020