
CS7150 Deep Learning
Jiaji Huang

https://jiaji-huang.github.io
03/02/2024

Announcement

Start to think about class project
• Individual or team of two
• Before next lecture, notify TA:
• your team
• your project topic, describe what you are going to do

• Project midterm presentation on 03/30

Recap of 1st half

• Architectures
• Conv nets
• RNN, LSTM, transformer
• Encoder-Decoder

• Applications
• Vision: Image Classification, object detection
• NLP: word embeddings, language understanding, machine translation
• Speech: ASR

Recap of 1st half

• Concepts
• Bias-variance trade-off

• Techniques
• Optimization (beyond SGD)
• normalizations
• Regularization

• Learning Paradigms
• Transfer learning
• (self-supervised) Pretrain + finetune

Recap: Pretrain + finetune in BERT

• Pretrain: Masked LM + NSP • Finetune: task specific

• Similar to transfer learning we saw in computer vision
• Finetuning is feasible if you have 1-2 middle-end GPU(s), e.g., on Colab

Scale of Language Models: # parameters

Art from lifearchitect.ai

https://lifearchitect.ai/models/

Scale of (pre-)training corpus size

Illustration from babylm

https://babylm.github.io/

How could a graduate student involve?

• Pretraining (??)
• Finetuning (yes!)

Huggingface

• Model hub is very rich

• Many APIs
• Standardized model architectures for many tasks
• Training pipeline
• Utility functions: dataset loading, evaluation metrics, ….

https://huggingface.co/

Finetuning with Huggingface API

• Install via
• Load dataset

Read more from huggingface tutorial page

https://huggingface.co/docs/transformers/en/training

Finetuning with Huggingface API

• Tokenize

Read more from huggingface tutorial page

https://huggingface.co/docs/transformers/en/training

Finetuning with Huggingface API

• Build the task-specific model “head”

• Finetune (supervised training)

Read more from huggingface tutorial page

https://huggingface.co/docs/transformers/en/training

Finetuning with Huggingface API

• Finetune (supervised training)

• Train

Read more from huggingface tutorial page

https://huggingface.co/docs/transformers/en/training

Issues with Finetuning

• Update top layer(s): may be suboptimal • Update all layers: costly
ℓℓ

Issues with Finetuning

• Even if we can afford full finetuning
• Imaging you are serving many tasks
• Each has its own version of finetuned full model!

Agenda

• Parameter Efficient Fine-Tuning (PEFT)
• In-context Learning
• Instruction Finetuning
• Reinforcement Learning from Human Feedback (RLHF)

Adaptor

Houlsby et. al, 2019

• Down project to 𝑚 < 𝑑
• Then up project to 𝑑
• # new parameter to tune

= 2𝑚𝑑 +𝑚 + 𝑑
• If finetune the transformer

layer itself:
parameters = 𝑂(𝑑!)

https://arxiv.org/pdf/1902.00751.pdf

Adaptor

• Discussion:
• Interpret the result
• Drawback?

LoRA

Hu et. al, 2021

• Keep dense matrix 𝑊 untouched
• Learn 𝐴, 𝐵 (with smaller inner dimension), add 𝐵𝐴 to 𝑊
• Each task has its own {𝐴, 𝐵}

https://arxiv.org/pdf/2106.09685.pdf

Agenda

• Parameter Efficient Fine-Tuning (PEFT)
• In-context Learning
• Instruction Finetuning
• Reinforcement Learning from Human Feedback (RLHF)

When Language Models scale up

e.g., recap of GPT-2

• Same architecture as GPT-1
• but trained on more data (4G->40G)
• and more parameters (117M->1.5B)
Surprisingly handles task in a zero-shot way
• No additional example, no gradient updates

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Apply GPT-2 in zero-shot fashion

• Frame task as language modeling
• e.g., LAMBDA dataset for language understanding

https://arxiv.org/pdf/1606.06031.pdf

Apply GPT-2 in zero-shot fashion

• Sometimes we need to design the prompt creatively (prompt engineering)
• e.g., text summarization task, construct prompt as

[long text to be summarized] + TL;DR:
• Then ask the model to generate continuation

Supervised methods

GPT-3

• Trained on more data (40G->600G)
• More parameters (1.5B->175B)

GPT-3

• Proposed In-context Learning, aka prompting
• Input: instruction + examples (zero to a few) + problem to be solved
• Output: answer to the problem
• No gradient updates like conventional finetuning

GPT-3 on SuperGLUE Benchmark

• A few sub-tasks of SuperGLUE
• Choice of Plausible Alternatives (COPA): example
Premise: The man broke his toe. What was the CAUSE of this?
Alternative 1: He got a hole in his sock.
Alternative 2: He dropped a hammer on his foot.

• Boolean Questions (BoolQ)
Input: a paragraph and a question
Output: yes or no

https://super.gluebenchmark.com/tasks/
https://people.ict.usc.edu/~gordon/copa.html
https://github.com/google-research-datasets/boolean-questions

GPT-3

Left: Bigger is better; Right: more example is better

Discussion

• Why it seems to work?
• There are similar patterns in the huge training data

• Would there be a better trigger than “TL; DR:” ?
• Learn it? But gradient back-prop doesn’t work on discrete token space

From GPT-2 paper:
Examples of naturally occurring
demonstrations of En-Fr pairs in webText
training set

Prefix Tuning

• Freeze the pretrained model
• Learn a prefix for each task
• Prefixes are token embeddings
• Only ~0.1% parameters to be

updated! (adaptor ~3%)

Prefix Tuning

• Decoder model: x -> y
• Reformatting into [prefix; x] -> y
• Where prefix is of length 𝐿
• Learn the prefix embedding matrix (𝐿×𝑑)

Prefix Tuning

• enc-dec models, reformatting to [prefix; x; prefix’] -> y

Results

• Evaluate on table-to-text task

BLEU scores: visualization from
cos597G slides

https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec06.pdf

More Comparisons, Ablations

• Less data hungry than
adaptor finetuning

• Sweet spot of 𝐿

Another Challenge for Prompting

• Multi-step reasoning
• Math:

• Common sense

Chain of Thoughts Prompting

Wei et. al, 2022

https://arxiv.org/pdf/2201.11903.pdf

Chain of Thoughts (CoT) Prompting

Model scale

Middle school
math problems

“zero-shot” CoT

Kojima et. al 2022, slides adapted from CS224n

https://arxiv.org/pdf/2205.11916.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf

“zero-shot” CoT

Kojima et. al 2022, slides adapted from CS224n

https://arxiv.org/pdf/2205.11916.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf

“zero-shot” CoT

Huge improvement

More example still better

Kojima et. al 2022, slides adapted from CS224n

https://arxiv.org/pdf/2205.11916.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf

Agenda

• Parameter Efficient Fine-Tuning (PEFT)
• In-context Learning
• Instruction Finetuning
• Reinforcement Learning from Human Feedback (RLHF)

LM doesn’t understand User’s intent

Example from CS288 slides

https://cal-cs288.github.io/sp23/slides/cs288-sp23-rlhf.pdf

Instruction Finetuning

• Train on (many) tasks that involve Instructions

Chung et. al, 2022

https://arxiv.org/pdf/2210.11416v5.pdf

Differ from Previous finetuning

• BERT

• GPT-2 and 3

Pretrained ModelTask input Task target

Pretrained Modeldesigned prompts
for the task

Task target

Differ from Previous finetuning

• Prefix finetuning

• Instruction Finetuning

Pretrained Model
Learned

prefix/prompts
for the task

Task target

Pretrained Model⋮ ⋮Many Tasks’ inputs Many Tasks’ outputsNew task input

Detour a bit: Task-level Generalization

Meta Learning
• After being trained many tasks
• The model won’t need many training samples for a new task
It is also possible to
• Select models trained on “representative tasks”
• Create stronger model ensemble

(Huang et. al, 2021)

https://arxiv.org/pdf/2111.03628.pdf

Back to Instruction Finetuning

• 62 NLP datasets
• 12 task clusters
• Finetuned model is called FLAN (Finetuned LAnguage Net)

Template

• Generate many instruction templates for each task

Slides adapted from Wei’s talk

https://jasonwei20.github.io/files/FLAN%20talk%20external.pdf

Examples

Chung et. al, 2022

https://arxiv.org/pdf/2210.11416v5.pdf

Gains

• Benefit many pretrained model
• Bigger gain as model size grows

Agenda

• Parameter Efficient Fine-Tuning (PEFT)
• In-context Learning
• Instruction Finetuning
• Reinforcement Learning from Human Feedback (RLHF)

We want the LM to be

• Smart enough (instruction finetuning helps)
• But also
• Friendly
• Peaceful (avoid answer “how to make a bomb”)
• Politically correct
• …

Put Human’s Opinion into the Loop

• E.g., summarization task
• Imagine for any summary, we can get human opinion score (reward)

• Maximize the reward over many generated summaries

Example from CS288 slides

https://cal-cs288.github.io/sp23/slides/cs288-sp23-rlhf.pdf

Formalize a bit

• Treat LM as some distribution 𝑝"(𝑠) over all possible summaries
• Maximize average reward over many generated summaries

max
"
𝔼#~%!(#)[𝑅(𝑠)]

• Different from the objective we saw before, why?
• Cannot be solved by SGD, but by policy gradient

Policy Gradient Descent

𝜕𝔼!~#!(!)[𝑅(𝑠)]
𝜕𝜃

=
𝜕
𝜕𝜃
+𝑅 𝑠 𝑝& 𝑠 𝑑𝑠

	 = +𝑅 𝑠
𝜕𝑝& 𝑠
𝜕𝜃 𝑑𝑠

	 = +𝑅 𝑠
1

𝑝& 𝑠
0
𝜕𝑝& 𝑠
𝜕𝜃

0 𝑝& 𝑠 𝑑𝑠

	 = 𝔼!~#!(!)[𝑅(𝑠) 0 ∇ ln 𝑝& 𝑠]

	 ≈
1
𝑚6

'()

*

𝑅(𝑠') 0 ∇ ln 𝑝& 𝑠'

• Sample summaries 𝑠!’s from current 𝑝"(𝑠)

Note: The actual algorithm is used is
PPO. We will revisit later!

On the Reward Function 𝑅 𝑠

• If we simply ask for numeric scores
• hard to calibrate
• costly
• Human annotators suffer 🙁

• Instead we only ask for comparison

Example from CS288 slides

https://cal-cs288.github.io/sp23/slides/cs288-sp23-rlhf.pdf

Learn a function 𝑅 𝑠

• Bradley-Terry Model

𝑝 𝑠(> 𝑠) =
𝑒*(#")

𝑒*(#") + 𝑒*(##)
=

1

1 + 𝑒* ## +*(#")
= 𝜎(𝑅 𝑠(− 𝑅(𝑠)))

• Parameterize the 𝑅(𝑠;𝒘) as some network
• A binary classifier on event 𝑠(≶ 𝑠)
• Denote 𝑦(,) = 1 if 𝑠(> 𝑠) else −1

max
𝒘

B
(,)

log 𝜎 𝑦(,) F 𝑅 𝑠(; 𝒘 − 𝑅(𝑠); 𝒘)

Put together: Instruction finetuning + RLHF

Figure from Ouyang et. al, 2022

RLHF

Supervised
finetuning

(SFT)

https://arxiv.org/pdf/2203.02155.pdf

Further Gain by RLHF

Stiennon et. al, 2020

https://arxiv.org/pdf/2009.01325.pdf

