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Recap of Last Lecture

• Encoder: understanding, e.g., BERT
• Decoder: generation, e.g., GPT
• Encoder-Decoder: seq-to-seq tasks, e.g., translation, ASR



Recap of Gradient Descent (GD)

For step 𝑠 = 0, 1, …
𝒘!"# = 𝒘! − 𝜂∇𝐿(𝒘!),

till ∇𝐿(𝒘!) ≈ 0 (stationary point reached)



Problem with GD

• Local minima and saddle point (both are stationary points)

• Convergence may be slow

Illustration from CS231n and Bishop book chapter 7

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture7.pdf
https://www.bishopbook.com/


Agenda

• Optimization
• Initialization
• Loss landscape and normalization
• Momentum and higher order methods

• Generalization: old and new
• Parallelism



Initialization matters

• Different initializations land at different stationary points



A not so good idea

• Initialize all parameters as constant 𝑐?
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• Parameters in the same layer keep the same along gradient updates!
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Break the Symmetry

• Initialize with random weights, draw from some distribution
• Control the variance

• Going deeper, activation’s variance (scale) can further increase

Aggregate 3 independent random weights, so variance may ×3



Xavier/Glorot Initialization

• Consider MLP network with 𝜎(2) as sigmoid or tanh
• Key idea: activation and gradient with constant variance
• Key assumption:
• Weights and inputs centered around 0, i.i.d distributed
• Bias initialized as all zero

• Key property:
• 𝜎 𝑧 ≈ 𝑧 around 0

Glorot et. al, 2010

https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf


Xavier/Glorot Initialization

• For 𝑙-th layer:
linear units 𝑧!" = ∑#$%
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• 𝑉𝑎𝑟 𝑎!" ≈ 𝑉𝑎𝑟 𝑧!" as 𝜎 𝑧 ≈ 𝑧 around 0, so
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Xavier/Glorot Initialization

• Consider backward
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• Putting together, set
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Xavier/Glorot Initialization

• If normal distribution

𝑤.,*~𝒩 0,
2

𝑛01# + 𝑛0
• If uniform distribution

𝑤.,*~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 −
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,
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He initialization

• Consider 𝑎 = 𝑅𝑒𝐿𝑈(𝑧)

• 𝑉𝑎𝑟 𝑎.0 ≈ #
2
𝑉𝑎𝑟 𝑧.0

• Follow the same derivation, we can get 
• 𝑉𝑎𝑟 𝑤,,- = .

/!"#
for forward variance preservation

• 𝑉𝑎𝑟 𝑤,,- = .
/!

for backward variance preservation

He et. al 2015 

https://arxiv.org/pdf/1502.01852.pdf


Question

• If the 𝑙-th layer is convolution, what would be the 𝑛01# and 𝑛0?
(𝐶345 , 𝐶., , 𝑚, 𝑛) filter
𝑛0 = 𝐶345
𝑛01# = 𝐶.,×𝑚×𝑛



Agenda

• Optimization
• Initialization
• Loss landscape and normalization
• Momentum and higher order methods

• Generalization: old and new
• Parallelism



Loss landscape

• Consider Taylor’s expansion near a stationary point 𝒘∗

• 𝐿 𝒘 = 𝐿 𝒘∗ + ∇𝐿 𝒘∗ 𝒘−𝒘∗ + #
2
𝒘−𝒘∗ 7𝑯 𝒘−𝒘∗

= 𝐿 𝒘∗ + #
2
𝒘−𝒘∗ 7𝑯 𝒘−𝒘∗

• 𝑯 = N$"(
$𝒘$𝒘( 𝒘+𝒘∗

is Hessian

• Eigen-decomposition 𝑯 = 𝑼𝚲𝑼7, and rewrite
1
2
𝒘 −𝒘∗ 7𝑯 𝒘−𝒘∗ =

1
2
Q𝜆. 𝒖.7 𝒘−𝒘∗ 2



Loss landscape

• So near local minimum 𝒘∗, loss is

𝐿 𝒘 = 𝐿 𝒘∗ +
1
2
Q𝜆. 𝒖.7 𝒘−𝒘∗ 2

• If locally convex, all 𝜆. ≥ 0

The contour of 𝐿 𝒘 − 𝐿 𝒘∗ = 1
(Bishop et. al, chapter 7)

Gradient steps through the contours
(Bishop et. al, chapter 7)

https://www.bishopbook.com/
https://www.bishopbook.com/


Loss Landscape

Local approximation

𝑳(𝒘) = 𝐿 𝒘∗ + #
2
∑𝜆. 𝒖.7 𝒘−𝒘∗ 2

• Gradient

∇𝐿 𝒘 =Q𝜆.𝒖.7 𝒘−𝒘∗ 𝒖.

• Take a gradient step
𝒘!"# = 𝒘! − 𝜂∇𝐿(𝒘!)

• 𝛼.,!"# = (1 − 𝜂𝜆.)𝛼.,!

𝛼%



Loss Landscape

Inspect the excessive loss term #
2
∑𝜆.𝛼.2

• After 𝑠-th gradient step, 𝛼.,!"# = (1 − 𝜂𝜆.)𝛼.,!
• To make sure excessive loss decays, we want

1 − 𝜂𝜆. ≤ 1 for all 𝑖

⟹ 𝜂 ≤
2

𝜆9):
• The loss term that decays slowest has 1 − 𝜂𝜆9., ≥ 1 − 2 2 ;*$+

;*,-

Inverse Condition number



The effect of unnormalized feature

• Consider linear regression
min
𝒘

𝑿𝒘 − 𝒚 2

• Hessian is 𝑿7𝑿
• e.g., 2D case, 𝑥#: blood platelet count, ~105 

𝑥2: body height in meters, ~100

• 𝑿7𝑿 would ~ 10#< 10=
10= 1

, 𝜆9):~10#<, 𝜆9.,~0

• Very skewed landscape, and ;*$+
;*,-

~0, extremely slow convergence



Normalization

• Mean and standard deviation

𝜇 = #
>
∑,+#> 𝒙,, 

𝜎. =
#
>
∑,+#> (𝑥,,. − 𝜇.)2

• Normalization:
𝑥,,. =

𝑥,,. − 𝜇.
𝜎.

Illustration from Bishop book Chapter 7

https://www.bishopbook.com/


Batch Normalization

• For the activations 𝒙 at a layer
• Training phase:
• Estimate 𝜇 and 𝜎,’s for a minibatch, update moving average estimate
• Normalize 𝒙 to ,𝒙
• Update to -𝒙, = 𝛾, ,𝒙, + 𝛽,

• Inference phase
• Use the moving average estimated 𝜇 and 𝜎,’s

Illustration: Bishop book Chapter 7Ioffe et. al, 2015

https://www.bishopbook.com/
https://arxiv.org/abs/1502.03167


Discussion

• Why we set the learnable multipliers 𝛾. and 𝛽.?
• Drawback of batch normalization?
• Batch size = 1?
• Determinism



Layer Norm

Illustration from Bishop book Chapter 7

• Do this for each sample 𝒙 in the minibatch
• Compute 𝜇 by averaging all dimensions of 𝒙
• Compute 𝜎 as the norm of 𝒙 − 𝜇
• Normalize by c𝒙 = (𝒙 − 𝜇)/𝜎
• Compute c𝒙𝑖 = 𝛾𝑖 e𝒙𝑖 + 𝛽𝑖
• No difference between training and testing phase

Illustration: Bishop book Chapter 7

https://www.bishopbook.com/
https://www.bishopbook.com/


Agenda

• Optimization
• Initialization
• Loss landscape and normalization
• Momentum and higher order methods

• Generalization: old and new
• Parallelism



Recap of Stochastic Gradient Descent (SGD)

• min
𝒘
{𝐿 = #

>
∑,+#> ℓ(𝒘, 𝒙,)}

• If 𝑁 is big, Compute ∇ℓ(𝒘, 𝒙,) for all 𝑛’s can be costly
• So we sample a mini-batch ℬ of 𝑛’s each step
For step 𝑠 = 0, 1, …

𝒘!"# = 𝒘! − 𝜂
1
|ℬ|

Q
,∈ℬ

∇ℓ 𝒘! , 𝒙,

till stopping criteria met



Problems with SGD

• Same as GD
• big condition number hamper convergence
• Local minima and saddle point

• In addition: noisy steps

Figure from CS231n

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture7.pdf


Momentum

• Smooth the steps by moving average of historical gradients
𝑉! = 𝛼𝑉!1# − 𝜂∇𝐿(𝒘!)

𝒘! = 𝒘!1# + 𝑉!
• 𝛼: momentum parameter

Gradient steps without momentum Gradient steps with momentum



Skip local minima

• The inertia helps

Illustration from paperwithcode

https://paperswithcode.com/method/sgd-with-momentum


In pyTorch

• Usually use momentum > 0.9



Agenda

• Optimization
• Initialization
• Loss landscape and normalization
• Momentum
• Higher order methods

• Generalization: old and new
• Parallelism



2nd order Optimization

• Approximate with quadratic function, and move to its minimum 



Newton’s method

• 𝐿 𝒘 ≈ 𝐿 𝒘! + 𝒘−𝒘!
7𝛻𝐿 𝒘! + 𝒘−𝒘!

7𝑯 𝒘−𝒘!

• RHS has minimum at
𝒘!"# = 𝒘! −𝑯1#𝛻𝐿 𝒘!

• No learning rate required, faster convergence than GD
• Damped Newton’s method: 

𝒘!"# = 𝒘! − 𝜂 2 𝑯1#𝛻𝐿 𝒘!

Where 0 < 𝜂 < 1
• Inverse Hessian is costly, 𝑂 𝑀B , where
𝑀 is number of model parameters Black: Gradient Descent

Blue: Newton’s method

Image source: notes here

https://www.stat.cmu.edu/~ryantibs/convexopt-S15/scribes/14-newton-scribed.pdf


Stochastic Version

• Approximate the 𝑯1#𝛻𝐿 𝒘! , where 𝐿 𝒘 = #
>
∑.+#> ℓ(𝒘, 𝒙.)

• Sample a batch ℬ
p𝛻𝐿 𝒘! =

1
|ℬ|

Q
,∈ℬ

∇ℓ 𝒘! , 𝒙,

q𝑯 = #
|ℬ|
∑,∈ℬ ∇2ℓ 𝒘! , 𝒙,

• Still not practical for deep learning, because of q𝑯1#



Scale the Gradient: Adagrad

• Normalize each dimension of the gradient by accumulated magnitude
𝐺 = 0
For s=1,2,…

sample batch ℬ
compute stochastic gradient 𝐺 = #

|ℬ|
∑,∈ℬ ∇ℓ 𝒘! , 𝒙,

update 𝐺 += 𝑔 ∗ 𝑔
𝑤!"# = 𝑤! − 𝜂 2

D
E

Duchi et. al, 2011

https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf


Scale the Gradient: RMSProp

𝐺 = 0
For s=1,2,…

sample batch ℬ

compute stochastic gradient 𝑔 = #
|ℬ|
∑,∈ℬ ∇ℓ 𝒘! , 𝒙,

update 𝐺 = 𝛾𝐺 + 1 − 𝛾 𝑔 ∗ 𝑔
𝑤!"# = 𝑤! − 𝜂 2

D
E

Hinton et. al, 2012

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


Scale the Gradient: Adam

𝐺# = 0, 𝐺2 = 0
For s=1,2,…

sample batch ℬ
compute stochastic gradient 𝑔 = #

|ℬ|
∑,∈ℬ ∇ℓ 𝒘! , 𝒙,

update 𝐺# = 𝛽#𝐺# + 1 − 𝛽# 𝑔
update 𝐺2 = 𝛽2𝐺2 + 1 − 𝛽2 𝑔 ∗ 𝑔
bias correction: 𝐺# = 𝐺#/(1 − 𝛽#5), 𝐺2 = 𝐺2/(1 − 𝛽25)
𝑤!"# = 𝑤! − 𝜂 2

E!
E"



In pytorch



Learning Rate Scheduler

• Infeasible to compute ideal learning rate
• Often decay the learning rate along training
• Warmup is sometimes used to skip local minima

Check pytorch page, figures from this post

cosine learning rate scheduler. Left: no warmup; right: with warmup

https://pytorch.org/docs/stable/optim.html
https://d2l.ai/chapter_optimization/lr-scheduler.html


Discussion

• How to choose batch size in practice?
• How do we scale learning rate w.r.t. batch size?



Agenda

• Optimization
• Initialization
• Loss landscape and normalization
• Momentum and higher order methods

• Generalization: old and new
• Parallelism



Recap: Generalization

• The ability to predict well on unseen samples
• Model family ℱ = {𝑓𝜽 𝒙 }
• Generalization error: expected error/loss on a test input
• ≈ modeling error + estimation error

ℱ

True function 𝑔(𝒙)

modeling error
estimation error

Cartoon adapted from OMCS lecture slides

https://sites.cc.gatech.edu/classes/AY2023/cs7643_spring/slides/L2_LinearClassifiers.pdf


Reduce the Variance

• Inject inductive bias (encodes our prior knowledge)
• e.g., small variation doesn’t change object category

Illustration from Bishop book, chapter 9

https://www.bishopbook.com/


Regularization

• Constrain the model family ℱ

• e.g., weight decay min𝒘 𝐿 𝒘 + ;
2
𝒘 2

• e.g., sparsity min
𝒘
𝐿 𝒘 + ;

2
𝒘 #

Question: what are the gradients for these two cases?



Weight Decay: Loss Landscape View

Illustration from Bishop book, chapter 9

• Suppressing the magnitude of weights
• Especially those to which loss is less sensitive

https://www.bishopbook.com/


Earlier Stopping

train

validation

Training iterations

loss

Stop training here From the perspective of weight decay

Bishop book Chapter 9

https://www.bishopbook.com/


Drop out

Bishop book Chapter 9

https://www.bishopbook.com/


Model Averaging

Huang et. al, 2017

https://arxiv.org/pdf/1704.00109.pdf


Sharpness

Keskar et. al, 2016

• Sharp local minima generalizes poorly
• Question: How to measure sharpness?

𝑓(𝒘) :𝑓(𝒘)

https://arxiv.org/abs/1609.04836


Agenda

• Optimization
• Initialization
• Loss landscape and normalization
• Momentum and higher order methods

• Generalization: old and new
• Parallelism



Data Parallelism

• Want to use large batch size, but single GPU doesn’t have enough 
memory

Illustration from this blogpost

https://www.telesens.co/2017/12/25/understanding-data-parallelism-in-machine-learning/


SGD with multiple workers

Illustration from this blogpost

https://medium.com/princeton-systems-course/reimplementation-of-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent-75d2ec48e34


Model Parallelism

• Pipeline parallel • Tensor parallel
Data batch Data batch

Data batch
Illustration adapted from aws sagemaker

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-intro.html

