
CS7150 Deep Learning
Jiaji Huang

https://jiaji-huang.github.io
02/03/2024

Recap of Last Lecture

• Convolution, correlation, pooling
• Convolutional Neural network
• Transfer learning
• Beyond Image Classification

×𝐶!"#

Conv, ReLU pooli
ng Reshape

(to vector) MLP layer(s)

×𝐿

Agenda

• Learning on Sequences
• Word Embedding
• Recurrent Neural Networks
• Transformer

Modeling Sequences

• Natural Language • Source Code

Illustrations from wiki and this blogpost

https://en.wikipedia.org/wiki/Chapters_and_verses_of_the_Bible
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.crazyegg.com%2Fblog%2F8-reasons-analyze-source-code%2F&psig=AOvVaw0LdLouaMFiVNyTJpq7me7v&ust=1706682605767000&source=images&cd=vfe&opi=89978449&ved=0CBUQjhxqFwoTCKDaw6W-hIQDFQAAAAAdAAAAABAb

Modeling Sequences

• Speech Signal

Illustration from this blogpost

https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility

Modeling Sequences

• DNA

Illustration from Yang et. al 2020

https://www.frontiersin.org/articles/10.3389/fbioe.2020.01032/full

Shannon Game

• Guess the next letter (a-z and space) given previous (C. Shannon, 1950)

• Modern example: auto word suggestion of email clients

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

Statistical Language Modeling

• Modeling 𝑝(𝑤!|𝑤"!#")
• n-gram: assuming 𝑝 𝑤! 𝑤"!#" = 𝑝(𝑤!|𝑤!#(%#")

!#")

• unigram 𝑝 𝑤 = #(
∑! #(

where #𝑤: occurrence of word type 𝑤 in the corpus

• Bigram 𝑝 𝑤!|𝑤!#" = #(("#$,(")
#("#$

, enumerate all types of (𝑤!#", 𝑤!)’s

• Trigram 𝑝 𝑤!|𝑤!#+, 𝑤!#" = #(("#%,("#$,(")
#(("#%,("#$)

,
enumerate all types of (𝑤!#+, 𝑤!#", 𝑤!)’s

“Train” an n-gram Model

• 𝑝 𝑤! 𝑤!#(%#")
!#" =

#(("#('#$),…("#$,(")
#(("#('#$),…("#$)

, enumerating all types of
#(𝑤!#(%#"), …𝑤!#", 𝑤!)
• Gather a corpus
• Calculate unigram 𝑝(𝑤) for all word types 𝑤
• For 𝑘 = 2,… , 𝑛:
• Calculate 𝑘-grams for all types of 𝑘-tuples

• Store the probabilities as a look-up table
• Question: what if a 𝑛-tuple type has zero count

Back-off

• When #(𝑤!# %#" , …𝑤!#", 𝑤!) > 𝜖
• Discount the usual n-gram

𝑝 𝑤! 𝑤!#(%#")
!#" = 𝑑 0

#(("#('#$),…("#$,(")
#(("#('#$),…("#$)

• 𝑝 𝑤! 𝑤!#(%#")
!#" when #(𝑤!#(%#"), …𝑤!#", 𝑤!) < 𝜖

• Back off to (𝑛 − 1) gram
𝑝 𝑤! 𝑤!#(%#")

!#" = 𝛼 0 𝑝 𝑤! 𝑤!#(%#+)
!#"

• 𝑑 by Good–Turing estimation, 𝛼 such that 𝑝 𝑤! 𝑤!#(%#")
!#" adds to 1

https://en.wikipedia.org/wiki/Good%E2%80%93Turing

Test an n-gram Model

• Gather a test corpus (word sequence 𝑤", … , 𝑤-)
• Calculate

𝑝 𝑤", … , 𝑤- = 𝑝 𝑤" 𝑝(𝑤+|𝑤")⋯𝑝(𝑤-|𝑤-#(%#")-#")
• Very tiny number, use entropy:

−
1
𝑇
ln 𝑝 𝑤", … , 𝑤- = −

1
𝑇
9
!."

-

ln 𝑝 𝑤!|𝑤/01(",!#(%#"))
!#"

• (Test) Perplexity: 𝑃𝑃𝐿 ≜ exp − "
-
∑!."- ln 𝑝 𝑤!|𝑤/01(",!#(%#"))

!#"

Entropy and PPL

• If we take base 2
• The entropy $%∑&'$

% log(𝑝 𝑤&|𝑤)*+($,&.(/.$))&.$ is measured in bits
• PPL = 2entropy

• 1 ≤ PPL ≤ all possibilities (vocabulary size)
• Back to Shannon game
• PPL ≤ 27
• Therefore Bit per Character (bpc) ≤ 4.75
• As n-gram order increases, we get lower PPL

Table from (C. Shannon, 1950)

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

Packages

• Kenlm, srilm
• ARPA format

𝑙𝑜𝑔$% unigram

𝑙𝑜𝑔$% bigram

Backoff weights (𝑙𝑜𝑔$%)

Example from this blogpost

https://github.com/kpu/kenlm
http://www.speech.sri.com/projects/srilm/
https://cmusphinx.github.io/wiki/arpaformat/

Agenda

• Learning on Sequences
• Word Embedding
• Recurrent Neural Networks
• Transformer

Motivating

• Many more tasks beyond predicting the next word/letter
• E.g., sentiment classification

UFO detector sold on amazon

https://www.amazon.com/UFO-Detector-magnetometer-interfaced-microcontroller/dp/B000FVUKKO

Motivating

• E.g., Named Entity Recognition (NER)

Credit: Forbes news

?

https://www.forbes.com/sites/davidphelan/2024/01/28/apple-surprise-announcement-biggest-ever-iphone-shake-up-coming-soon/?sh=3ac2cf88497f

Word Representations

• Aka embeddings
• One-hot embedding: not very useful
• It’s better to encoding some semantics, e.g.,

Semantics: Word Analogy Task

• Allows us to use linear algebra
• Man to woman is like king to ?

woman

man

king

?

man – woman = king - ?
Þ ? = king – man + woman
Þ Take ? as the nearest neighbor of RHS

Word2vec

Deep dive into skip-gram
How do we train it? Suppose a window size of 5

Figure taken from blogpost

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Deep dive into skip-gram

• Viewed as 2-layer network
• e.g., receive a training sample (𝑤=“the”, 𝑐=“quick”)

the

⋮

fox

quick

Look-up embedding layer

the

⋮

fox

quick

the

Linear layer softmax

P(y=quick)

Maximize it

P(y=fox)
P(y=the)

𝑧$, . . , 𝑧& =
𝑒'!

∑()$& 𝑧(
, … ,

𝑒'"
∑()$& 𝑧(

𝑊 𝐶

⋮

𝑧

Deep dive into skip-gram

• The overall training objective is

min
𝑾,𝑪

9
(,4

− log 𝑝𝑾,𝑪(𝑐|𝑤)

• Typically, we use 𝑾 as word representation
• Trained by stochastic gradient descent (SGD)

Skip-Gram with Negative Sampling (SGNS)

• Vocab can be huge
• huge summation on softmax denominator!
• An efficient variant: contrast with negative samples
• P(𝑥 and 𝑦 co-occur) = 𝜎 𝑊5-𝐶6 ,

where 𝜎 𝑠 = "
"78#)

, sigmoid function

Skip-Gram with Negative Sampling (SGNS)

• Denote negative samples as 𝑦9 , 𝑖 = 1,… , 𝑘 from 𝑞(𝑦)
• Maximize:

log 𝜎 𝑊5-𝐶6 +9
9."

:

log 𝜎 −𝑊5-𝐶6*

• In practice, 𝑞(𝑦) is uni-gram probability

Relationship with Matrix Factorization

• (O. Levy et. al, 2014) shows that SGNS is implicitly factorizing

PMI(𝑤, 𝑐)= log #((,4)
#(;#4

• Glove (Pennington et. al, 2014): Weighted Factorization of
a word-word co-occurrence matrix

𝑤

𝑐

≈ ∗

𝑊 𝐶

Read this paper on Point-wise Mutual Information (PMI)

https://papers.nips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
https://nlp.stanford.edu/projects/glove/
https://aclanthology.org/J90-1003.pdf

FastText

• Embedding for a word not seen during training?
• Break word into char n-grams, e.g., n=3

where → <wh whe her ere re>
• 𝑊[“where”] = 𝑊[“<wh”] + 𝑊[“whe”] + 𝑊[“her”] + 𝑊[“ere”] +
𝑊[“re>”]
• Training: plug above into SGNS
• Testing: for unseen word: sum its char n-gram embeddings

Model downloadable from here

https://fasttext.cc/docs/en/support.html

Evaluation

• Extrinsic evaluation
• Plug into an ML system and evaluate on a downstream task
• depends on the ML system
• But practically very indicative
• Example: sentiment classification. “I like this movie” v.s. “This is a fair movie”

• Intrinsic evaluation
• Intermediate, not directly related to downstream task
• Example: Word analogy

Why so successful

• native c implementation
• handy python package: genism, fastText, …

• A few initial successes
• Plenty of room to improve
• Publish code and data

https://github.com/tmikolov/word2vec
https://radimrehurek.com/gensim/models/word2vec.html
https://fasttext.cc/docs/en/support.html

Generalize: *2vec

• Exploit pairwise associations between entities

Agenda

• Learning on Sequences
• Word Embedding
• Recurrent Neural Networks
• Transformer

Motivation

• N-gram and Word2vec both look into a small context window
• Model the entire sequence? E.g.,

• Would MLP work?
• Would conv net work? (Y. Dauphin et. al, 2017)

the

⋮

fox

quick

the

⋮

fox

quick

Linear layer softmax

P(y=quick)

Maximize it

P(y=fox)
P(y=the)

Look-up embedding layer

brown

The [mask] brown fox … dog

Nonlinear layers

[mask]

[mask]
⋮

https://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf

Recurrent Neural Network

• Hidden state ℎ!
• Input 𝑥!
• ℎ! = 𝑔(𝑈ℎ!#" +𝑊𝑥!), e.g., 𝑔(0) as tanh
• 𝑦! = sonmax(𝑉ℎ!)

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

RNN

• “Unroll” along time axis

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Stacked RNN layers

ℎ!" = 𝑔(𝑈"ℎ!#"" +𝑊"𝑥!)

ℎ!+ = 𝑔(𝑈+ℎ!#"+ +𝑊+ℎ!")

ℎ!< = 𝑔(𝑈<ℎ!#"< +𝑊<ℎ!+)

⋮

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

RNN for language Modeling

• Predict next word given previous ones

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Bi-directional RNN

• Input 𝑥", 𝑥+, … , 𝑥-
• ℎ!

= = 𝑅𝑁𝑁=(𝑥", 𝑥+, … , 𝑥!)
• ℎ!> = 𝑅𝑁𝑁>(𝑥- , 𝑥-#", … 𝑥!)
• ℎ! = [ℎ!

= , ℎ!>]

Illustration from https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Why bi-directional

• Some applications allow us to see the entire sequence, e.g.,
• Text Classification
• Speech Recognition

• Bi-directional often beats uni-directional:
• e.g., a speech recognition example (lower WER is better)

ASR results from https://www.jonathanleroux.org/pdf/Moritz2019Interspeech09.pdf

https://www.jonathanleroux.org/pdf/Moritz2019Interspeech09.pdf

LSTM, but why?

• RNNs can be hard to train
• Gradient explosion and vanishing problem

• In modern words, attention span is very short!

LSTM

• Introduces memory 𝑐!
• Forget gate 𝑓! = 𝜎(𝑈=ℎ!#" +𝑊=𝑥!)
• Add gate

𝑖! = 𝜎 𝑈9ℎ!#" +𝑊9𝑥!
𝑔! = tanh(𝑈?ℎ!#" +𝑊?𝑥!)

• Combined 𝑐! = 𝑔! ⊙ 𝑖! + 𝑐!#"⊙𝑓!
• Output gate

𝑜! = 𝜎(𝑈@ℎ!#" +𝑊@𝑥!)
ℎ! = 𝑜! ⊙ tanh(𝑐!)

sigmoid 𝜎(#) tanh(D)

Illustration from wiki

https://en.wikipedia.org/wiki/Long_short-term_memory

GRU

• A Variant of LSTM, no memory cells
• fewer parameters

Comparison

Agenda

• Learning on Sequences
• Word Embedding
• Recurrent Neural Networks
• Transformer

Motivating

Illustration from https://web.stanford.edu/~jurafsky/slp3/11.pdf

the

⋮

fox

quick

the

⋮

fox

quick

Linear layer softmax

P(y=quick)

Maximize it

P(y=fox)
P(y=the)

Look-up embedding layer

brown

The [mask] brown fox … dog

Nonlinear layers

[mask]

[mask]

⋮

https://web.stanford.edu/~jurafsky/slp3/9.pdf

A Transformer Block

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Math of Self-attention

• Map hidden states to keys, queries and values (𝑑 dimensional)
𝑞! = 𝑊"𝑥! , 𝑘! = 𝑊#𝑥! , 𝑣! = 𝑊$𝑥!

• Raw score
𝑠!,& = 𝑞! * 𝑘&/ 𝑑

• Attention weights

𝛼!,& =
𝑒'!,#
∑(𝑒'!,$

• Output Hidden states

𝑦! =0
&

𝛼!,&𝑣&

Multi-head Attention

• Input 𝑥 ∈ ℝA

• Multiple sets of 𝑊B, 𝑊:and 𝑊C

• Each project to 𝑑/#heads
• Typically,
#heads=8, 12, 16, 24, …

• concatenate output from each head
• Project with 𝑊@, usually same 𝑑

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Residual Connection (refer to last lecture)

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

𝑥 + 𝑠𝑒𝑙𝑓𝐴𝑡𝑡𝑛 𝑥

𝑥 + 𝐹𝐹 𝑥

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Layer Normalization

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Feedforward Layer

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

𝑦 = 𝑊*𝜎(𝑊$𝑥)

𝑊*

𝑊$

𝑥

𝑦
intermediate dimension: Usually 4 x input dimension

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Transformer Encoder for masked LM

Illustration from https://web.stanford.edu/~jurafsky/slp3/11.pdf

the

⋮

fox

quick

the

⋮

fox

quick

Linear layer softmax

P(y=quick)

Maximize it

P(y=fox)
P(y=the)

Look-up embedding layer

brown

The [mask] brown fox … dog

Nonlinear layers

[mask]

[mask]

⋮

https://web.stanford.edu/~jurafsky/slp3/9.pdf

(Causal) Attention Mask

• 𝛼9,D =
8)*,,

∑- 8
)*,- , 𝑦9 = ∑D 𝛼9,D𝑣D

• The range of 𝑗 (or 𝑙) for causal language model: 𝑗 ≤ 𝑖

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

Transformer Decoder for (Causal) LM

• With Attention mask, we can predict next word given previous ones

Did we miss anything?

• Consider sentiment classification
“this is good, isn’t it?”
vs

“this isn’t good, is it?”
• Same hidden state for classification
• We’re agnostic to word orders!

this is good isn’t it

this isn’t good is it

Binary classifier

Positional Encoding

Illustration from https://web.stanford.edu/~jurafsky/slp3/10.pdf

https://web.stanford.edu/~jurafsky/slp3/10.pdf

Absolute Position Encoding

• Each position with a encoding vector
• E.g, sinusoidal

�⃑�9 = sin𝜔"𝑖 , cos𝜔" 𝑖, … , sin𝜔A/+𝑖, cos𝜔A/+ 𝑖
• Why it helps

�⃑�9 0 �⃑�D =9
F."

A/+

cos𝜔F(𝑖 − 𝑗)

Imposes decaying for distant positions!

Relative Position Encoding

• Some function of 𝑖 − 𝑗
• E.g., ALiBi’s raw score

𝑠9,D =
𝑞9 0 𝑘D
𝑑

− 𝑐 𝑖 − 𝑗 , 𝑐 > 0

• Encourage to pay more attention to nearby tokens

RoPE: Another Relative Position Encoding

• Rotate 𝑞9 by 𝑖×𝜃, 𝑘D by 𝑗×𝜃
• So if 𝑖 − 𝑗 big, their inner product is small

