
CS7150 Deep Learning
Jiaji Huang

https://jiaji-huang.github.io
01/27/2024

Announcement

• Homework Submission via Canvas
• Derivations, discussions in pdf format
• Code submission via

• 01/29: Last day to drop without a W grade
• Presentations start from next lecture (02/03)
• (randomized) order to present
• No presentation on days of exam and project report
• 30~45min with discussion

Recap of Last Lecture

• Supervised Learning, e.g., classification
• Non-parametric method, e.g., Nearest Neighbor Classifier
• Parametric methods
• Logistic regression
• Softmax classifier
• MLP (feed-forward network)

Agenda

• Introduction: Vision Tasks
• Building Blocks
• Convolutional Networks
• Beyond Image Classification

Vision Tasks: Understanding

• Image classification
• Object detection

• Image segmentation

Illustrations from Chapter 10 of Deep Learning Foundations and Concepts

https://www.bishopbook.com/

Vision Tasks: Generation

• Image captioning

Illustrations from this article and DALL-E

• Creating Image from text

https://www.analyticsvidhya.com/blog/2023/06/vision-transformers/
https://openai.com/research/dall-e

Vision Tasks: Other

• Style transfer • Super Resolution

Illustrations from this blogpost and chapter 20 of Deep Learning Foundations and Concepts

https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-neural-style-transfer-ef88e46697ee
https://www.bishopbook.com/

Agenda

• Introduction: Vision Tasks
• Building Blocks
• Convolutional Networks
• Beyond Image Classification

MLP for image tasks?

• Not necessarily the best choice
• Images are big, 𝐻×𝑊 image has 𝐻𝑊 pixels
• Mapping to same dimension requires 𝑂((𝐻𝑊)!)parameters
• Receptive field: the input pixels that the output depends
• Each output depends all input
• Very large receptive field

Motivating

• Task: decide if zebra exists in an image
• The receptive field
• no need to look into the grass
• be sensitive to zebra texture

• One idea:
• depending on neighborhood only
• parameter reduced to 𝑂(𝐻𝑊×𝑚𝑛)

𝑤! !"#$%

Motivating

• Further, Local structures (e.g., edges) can be repeated
• Share parameters at different locations
• 𝑂(𝑚𝑛) parameters

𝑤! !"#$%

Convolution Operator

• Convolutional kernel/mask: the 𝑚×𝑛 weights in the small neighborhood
• The mask may look like , to pick up the zebra
• Stride the kernel inside the image, at each position 𝑥, 𝑦 :
• Multiply the pixel values and kernel weights, element-wisely
• Sum the products

≈ 0 = Big value!

1D Convolution: Continuous Case

• Signal 𝑓 𝑡 , kernel 𝑔(𝑡), convolution is defined as

𝑓 ∗ 𝑔 𝑡 = 1
"#

#

𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏 = 1
"#

#

𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏

• 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓
• How to compute:
• Express using dummy variable 𝜏
• Reflect 𝑔(𝜏) to 𝑔(−𝜏)
• Move to offset 𝑡
• Integrate their product (where they overlap)

Illustration from wikipage

https://en.wikipedia.org/wiki/Convolution

1D Convolution: Discrete Case

• kernel 𝑔%, signal 𝑓%

(𝑓 ∗ 𝑔)%= 2
&'()

)

𝑓&𝑔%(&

= 2
&'()

)

𝑓%(&𝑔& = (𝑔 ∗ 𝑓)%

• Finite length 𝑔: defined on 𝑛 = −𝑀,… ,𝑀

(𝑓 ∗ 𝑔)%= 2
&'(*

*

𝑓%(&𝑔&

• Exercise: If 𝑓 has length 𝑁, length of 𝑓 ∗ 𝑔?
𝑁 +𝑀 − 1

Illustration from here

https://e2eml.school/convolution_one_d.html

Convolution v.s. correlation

• Correlation doesn’t flip 𝑓 or 𝑔

𝑓 ⋆ 𝑔 𝜏 = 1
$%"#

#

𝑓 𝑡 𝑔 𝑡 + 𝜏

𝑓 ⋆ 𝑔 𝑘 = 8
&%"#

#

𝑓 𝑛 𝑔[𝑛 + 𝑘]

Illustration from wiki

https://en.wikipedia.org/wiki/Cross-correlation

2D convolution: Discrete Case

• 2D kernel 𝜅 for input image 𝑰, compute

• Note:
• A kernel is also called a filter
• Convolution flips the kernel.

But in deep learning we don’t. In fact,
we are calculating correlation. Why?

Illustration from here

𝜅 ⋆ 𝑰

= $
+'((-(.)/1

(-(.)/1

$
2'((%(.)/1

(%(.)/1

𝜅 𝑖, 𝑗 𝑰(𝑥 + 𝑖, 𝑦 + 𝑗)

Exercise: 𝐻×𝑊 image, kernel
size 𝑚×𝑚, what is the
output size?
(𝐻 −𝑚 + 1)×(𝑊 −𝑚 + 1)

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Variants

• Stride
• We move the mask by “stride”

positions each time
• Stride > 1 down samples the image

Stride = 2

• Padding
• Previous page: ”valid” padding
• “same” padding: pad zeros outside

boundary so output image size is
same as input

Illustration from here

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Variants

• Dilation: the space between
kernel elements

Illustration from here
Dilation=2

bias:

Exercise: 𝐻×𝑊 image, kernel size
𝑚×𝑚, padding=“valid”, stride=𝑠,
Dilation=𝑑, what is the output
image size?

𝜅 ∗ 𝑰 = 6
!"&$&#'

$&#
'

6
("&%&#'

%&#
'

𝜅 𝑖, 𝑗 𝑰 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏

https://towardsdatascience.com/review-dilated-convolution-semantic-segmentation-9d5a5bd768f5

Some typical 2D kernels

• Low-pass filter

• Gaussian kernel

Original image (left) and image after passing
through edge-detecting filter (right)

• High-pass filter

Illustration from wiki

https://en.wikipedia.org/wiki/Multidimensional_discrete_convolution

Multi-channel Input and output

• Generally, input image size 𝐶'(×𝐻×𝑊 (𝐶'(=3 for RGB image)
• Kernel size 𝐶'(×𝑚×𝑛

8
)%*

+!"

𝜅 𝑐 ∗ 𝑰[𝑐]

• Multi-channel output, kernel size 𝐶,-$×𝐶'(×𝑚×𝑛
• The 𝑐>-th output channel is

2
?'.

@!"

𝜅 𝑐>, 𝑐 ∗ 𝑰[𝑐]
×𝐶)*+

Connection with matrix multiplication

• 1D conv as Toeplitz matrix multiplication

(𝑓 ∗ 𝑔)!= 4
"#$%

%

𝑓!$"𝑔"

e.g., example in the right

=

𝑔$& 0 …
𝑔' 𝑔$& 0
𝑔& 𝑔' 𝑔$&

…
0

⋱
0 𝑔& 𝑔' 𝑔$&
0 0 𝑔& 𝑔'
0 0 0 𝑔&

𝑓&
𝑓(
𝑓)
⋮

𝑓*$&
𝑓*

• Exercise: 2D conv?

Translational Equivalence

• Shift the input by 𝛿 grids, output is also shifted by 𝛿
• Proof in 1D continuous case: we know

(𝑓 ∗ 𝑔)(𝑡) = :
$+

+

𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏

Consider "𝑓(𝑡) = 𝑓(𝑡 − 𝛿),
!𝑓 ∗ 𝑔 𝑡 = '

!"

"
!𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏

= ∫!"
" 𝑓 𝜏 − 𝛿 𝑔 𝑡 − 𝜏 𝑑𝜏

= ∫!"
" 𝑓 𝜏 𝑔 𝑡 − 𝛿 − 𝜏 𝑑𝜏

= (𝑓 ∗ 𝑔)(𝑡 − 𝛿)

Translational Equivalence

• Why we need that?
• For example objective detection
• If the the object shifts by 𝛿
• Then the decision box should also shift by 𝛿

Gradient w.r.t. Convolutional Kernel

• Consider single channel in, single channel out

𝑶 𝑥, 𝑦 = 8
',?∈𝒩

𝜅 𝑖, 𝑗 E 𝑰[𝑥 + 𝑖, 𝑦 + 𝑗]

B𝑶 D,E
BF ',?

= 𝑰[𝑥 + 𝑖, 𝑦 + 𝑗]

• Chain rule
𝜕ℓ

𝜕𝜅[𝑖, 𝑗]
=8

D,E

𝜕ℓ
𝜕𝑂[𝑥, 𝑦]

E 𝑰[𝑥 + 𝑖, 𝑦 + 𝑗]

Gradient w.r.t. Convolutional Kernel

𝜕ℓ
𝜕𝜅[𝑖, 𝑗] = 4

,,.

𝜕ℓ
𝜕𝑂[𝑥, 𝑦] Q 𝑰[𝑥 + 𝑖, 𝑦 + 𝑗]

• Consider Bℓ
B𝑶

as an image, correlating Bℓ
B𝑶

and 𝑰 for 𝑖, 𝑗 ∈ 𝒩

𝜕ℓ
𝜕𝑶

𝑰

𝜕ℓ
𝜕𝜅[1,1] =

𝜕ℓ
𝜕𝑶 ⋆ 𝑰 [1,1]

Gradient w.r.t. input

• To derive Bℓ
B𝑰[D,E]

, note

𝑶 𝑥, 𝑦 = 8
',?∈𝒩

𝜅 𝑖, 𝑗 E 𝑰[𝑥 + 𝑖, 𝑦 + 𝑗]

⟺ 𝑶 𝑥 − 𝑖, 𝑦 − 𝑖 = 8
',?∈𝒩

𝜅 𝑖, 𝑗 E 𝑰[𝑥, 𝑦]

𝜕ℓ
𝜕𝑰[𝑥, 𝑦]

= 8
',?∈𝒩

𝜕ℓ
𝜕𝑶 𝑥 − 𝑖, 𝑦 − 𝑗

E 𝜅 𝑖, 𝑗

• Consider Bℓ
B𝑶

as an image, convolve Bℓ
B𝑶

with 𝜅

Pooling

• Max pooling and average pooling
• Down samples the image
• Variants
• Stride
• Padding
• Dilation

Illustration from here

https://pub.towardsai.net/introduction-to-pooling-layers-in-cnn-dafe61eabe34

Translation Invariance

• Input translated by 𝛿, output doesn’t change
• Translate the zebra should maintain a decision that it exists
• Max Pooling achieves translational invariance (at least partly)

3 2 0 0

0 7 1 3

5 2 3 0

0 9 2 3

0 7 1 3

5 2 3 0

0 9 2 3

6 4 1 4

↑ by 1

7 3

9 3

7 3

9 4

All input values change,
But only 1 of 4 output values change

Gradient of Pooling

• 𝑦 = max{𝑥*, … , 𝑥' , … }
• Suppose argmax

'
𝑥' = 𝑘

• Then BE
BD!

= S1, 𝑖 = 𝑘
0, 𝑖 ≠ 𝑘

3 2 0 0

0 7 1 3

5 2 3 0

0 9 2 3

Only the max position receives a gradient!

Agenda

• Introduction: Vision Tasks
• Building Blocks
• Convolutional Networks
• Beyond Image Classification

Basic network architecture

• Alternate between conv + activation and pooling

×𝐶)*+

Conv, ReLU pooling
Reshape
(to vector) Fully connected layer(s)

(MLP)

×𝐿

LeNet

Video, colab

https://www.google.com/search?q=LeNet+video&rlz=1C5GCEM_enUS1008US1008&oq=LeNet+video&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBCDI5NjlqMGo3qAIAsAIA&sourceid=chrome&ie=UTF-8
https://colab.research.google.com/drive/1pP2UYRetNzmN2gKBQkgm43fxu3TZcxK0?usp=sharing

AlexNet

AlexNet

• Key innovations:
• Local response normalization
• Data augmentation
• Dropout on layer 7 and 8
• Momentum SGD

Local response normalization

• For each spatial location 𝑥, 𝑦 , at channel 𝑖
• normalize over adjacent 𝑛 channels

• Improve contrast in neighborhood
• dampen constant neighborhood
• Motivation in lateral inhibition

Illustration from here 𝑘, 𝛼, 𝛽, 𝑛 = (0,1,1,2)

https://en.wikipedia.org/wiki/Lateral_inhibition
https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac

Reduce Overfitting

• Data Augmentation: introduce variations in the input image
• Reflection, shift, …
• Other augmentations?

• Dropout
• At training: Randomly zeros some activations
• At testing: disabled
• Effect: Ensemble many models

Momentum SGD

• Weighted moving average of gradient
∆T= 𝛽 E ∆T"* +∇ℓ(𝒘)
𝒘T = 𝒘T"* − 𝛾 E ∆T

Illustration from this blogpost

https://kyle-r-kieser.medium.com/tuning-your-keras-sgd-neural-network-optimizer-768536c7ef0

Since AlexNet …

Trend according to paperwithcode

https://paperswithcode.com/sota/image-classification-on-imagenet-real

VGG

• smaller conv kernel, deeper
• Same receptive field size
• More ReLU’s (nonlinearity)
• Fewer parameters
• E.g, two 3x3 conv-layer v.s.
one 5x5 conv-layer

Going deeper

1x1 convolution

• Weighted average of all channels
• Reduce the number of channels in inception net
Exercise
Input: 512×512 RGB image
Layer1: 3×3 filter with 16 output channels,

stride=2, padding=“same”
Layer2: 1x1 filter with 8 output channels
What is output shape?

Resnet

• Deeper may be good
• But harder to train

Resnet

• One conjecture is reducing gradient vanishing

• Bℓ
BD
= Bℓ

BE
E BE
BD
= Bℓ

BE
E (Uℱ

UD
+ 𝐼)

• But the authors argue
“optimization difficulty is unlikely
to be caused by vanishing gradients”

𝒚

Figure from He et. al (2015)

ResNext

• Multiple branches

DenseNet

What does the network learn?

Slide credit: Fei-fei Li et. al CS231n

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture05.pdf

Visualizing Filters

Image from Zeiler et. al, 2014

https://arxiv.org/pdf/1311.2901.pdf

Visualizing Filters

Visualizing Filters

Implications

• The filters in lower layers are very “generic”
• They may be reused for another image set
• Recall estimation error (variance), due limited training data
• “reuse” a trained model for another task?

ℱ

True function 𝑔(𝒙)

modeling error
estimation error

Transfer Learning

“knowledge learned from a task is re-used in order to boost
performance on a related task”
Why it may work? Constrain to a smaller ℱW ∩ ℱ

Quote and Illustration from wiki

ℱ

True function 𝑔(𝒙)

modeling error
estimation error

ℱ,

https://en.wikipedia.org/wiki/Transfer_learning

Deep Transfer Learning Recipe

• Step 1: train a model on a big dataset, e.g., imagenet classification
• Step 2: cut the upper layers (at least softmax classifier)

×𝐶)*+

Conv, ReLU pooling
Reshape
(to vector) Fully connected layer(s)

(MLP)

×𝐿

Deep Transfer Learning Recipe

• Step3: Swap in your own upper layer, and train on your own data
• Option1: freeze some lower layers (e.g., conv layers)
• Option2: freeze all lower layers

×𝐶)*+

Conv, ReLU pooling
Reshape
(to vector) Fully connected layer(s)

(MLP)

×𝐿

How it works

How it breaks

“when the source and target domains are unrelated, the transfer may
fail forcefully”

Quote from Hosna et. al (2022)

ℱ

True function 𝑔(𝒙)

modeling error
estimation error

ℱ,

Huge modeling error (bias)!

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-022-00652-w

On Task Relevance

• Taskonomy by Stanford

http://taskonomy.stanford.edu/

Agenda

• Introduction: Vision Tasks
• Building Blocks
• Convolutional Networks
• Beyond Image Classification

Object Detection based on Proposed Regions

CNN
deer?
cat?
background?

Slide credit: Rice University CS6501

Faster R-CNN

• How to propose the regions?

• Translation equivalence!

Faster R-CNN

• Train the regional proposal network
• Binary Classifier: object in the region or not
• Regression: compare region vs groundtruth

How fast?

Even faster

• 𝑆 = 7 and 𝐵 = 2 in the paper
• Bounding box is center position
(𝑥, 𝑦), size (ℎ, 𝑤), and
confidence
• 𝐶 the number of object classes
• Faster than faster R-CNN
• But may fail for tiny object

Style Transfer

Discussion

• Why gram matrix captures style?
• What layers to transfer over?
• Why not initialize from content image?
• Multiple style?

