CS7150 Deep Learning

Jiaji Huang

https://jiaji-huang.github.io

01/27/2024

Announcement

- Homework Submission via Canvas
 - Derivations, discussions in pdf format
 - Code submission via
- 01/29: Last day to drop without a W grade
- Presentations start from next lecture (02/03)
 - (randomized) order to present
 - No presentation on days of exam and project report
 - 30~45min with discussion

Recap of Last Lecture

- Supervised Learning, e.g., classification
- Non-parametric method, e.g., Nearest Neighbor Classifier
- Parametric methods
 - Logistic regression
 - Softmax classifier
 - MLP (feed-forward network)

Agenda

- Introduction: Vision Tasks
- Building Blocks
- Convolutional Networks
- Beyond Image Classification

Vision Tasks: Understanding

- Image classification
- Object detection

• Image segmentation

Illustrations from Chapter 10 of <u>Deep Learning Foundations and Concepts</u>

Vision Tasks: Generation

• Image captioning

• Creating Image from text

an armchair in the shape of an avocado

Vision Tasks: Other

• Style transfer

• Super Resolution

Illustrations from this <u>blogpost</u> and chapter 20 of <u>Deep Learning Foundations and Concepts</u>

Agenda

- Introduction: Vision Tasks
- Building Blocks
- Convolutional Networks
- Beyond Image Classification

MLP for image tasks?

- Not necessarily the best choice
- Images are big, $H \times W$ image has HW pixels
- Mapping to same dimension requires $O((HW)^2)$ parameters
- Receptive field: the input pixels that the output depends
 - Each output depends all input
 - Very large receptive field

Motivating

- Task: decide if zebra exists in an image
- The receptive field
 - no need to look into the grass
 - be sensitive to zebra texture
- One idea:
 - depending on neighborhood only
 - parameter reduced to $O(HW \times mn)$

Motivating

- Further, Local structures (e.g., edges) can be repeated
- Share parameters at different locations
 - O(mn) parameters

Convolution Operator

- Convolutional kernel/mask: the $m \times n$ weights in the small neighborhood
- The mask may look like **///** , to pick up the zebra
- Stride the kernel inside the image, at each position (*x*, *y*):
 - Multiply the pixel values and kernel weights, element-wisely
 - Sum the products

 ≈ 0

= Big value!

1D Convolution: Continuous Case

• Signal f(t), kernel g(t), convolution is defined as

$$(f * g)(t) = \int_{-\infty} f(\tau)g(t-\tau)d\tau = \int_{-\infty} f(\tau)g(t-\tau)d\tau$$

•
$$f * g = g * f$$

- How to compute:
 - Express using dummy variable au
 - Reflect $g(\tau)$ to $g(-\tau)$
 - Move to offset *t*
 - Integrate their product (where they overlap)

Illustration from <u>wikipage</u>

1D Convolution: Discrete Case

$$(f * g)_n = \sum_{k=-M} f_{n-k} g_k$$

• <u>Exercise</u>: If f has length N, length of f * g? N + M - 1

Illustration from here

Convolution v.s. correlation

Illustration from wiki

2D convolution: Discrete Case

• 2D kernel κ for input image I, compute

$$\kappa \star \mathbf{I} = \sum_{i=-(m-1)/2}^{(m-1)/2} \sum_{j=-(n-1)/2}^{(n-1)/2} \kappa(i,j)\mathbf{I}(x+i,y+j)$$

- Note:
 - A kernel is also called a filter
 - Convolution flips the kernel. But in deep learning we don't. In fact, we are calculating correlation. Why?

Illustration from here

30	31	2_{2}	1	0
02	02	1_0	3	1
3	1_1	2_{2}	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Exercise: $H \times W$ image, kernel size $m \times m$, what is the output size? $(H - m + 1) \times (W - m + 1)$

Variants

• Stride

- We move the mask by "stride" positions each time
- Stride > 1 down samples the image

Illustration from here

• Padding

- Previous page: "valid" padding
- "same" padding: pad zeros outside boundary so output image size is same as input

Variants

• Dilation: the space between bias: kernel elements

$$\kappa * \mathbf{I} = \sum_{i=-\frac{m-1}{2}}^{\frac{m-1}{2}} \sum_{j=-\frac{n-1}{2}}^{\frac{n-1}{2}} \kappa(i,j)\mathbf{I}(x+i,y+j) + \mathbf{b}$$

Exercise: $H \times W$ image, kernel size $m \times m$, padding="valid", stride=s, Dilation=d, what is the output image size?

Illustration from <u>here</u>

Some typical 2D kernels

• Low-pass filter

1	1	1	1	1
1	1	1	1	2
1	1	1	1	1

1	2	1
2	4	2
1	2	1

• Gaussian kernel

• High-pass filter

0	-1	0	-1	-1
-1	4	-1	-1	8
0	-1	0	-1	-1

Original image (left) and image after passing through edge-detecting filter (right)

Illustration from wiki

Multi-channel Input and output

- Generally, input image size $C_{in} \times H \times W$ (C_{in} =3 for RGB image)
- Kernel size $C_{in} \times m \times n$

$$\sum_{c=1}^{C_{in}} \kappa[c] * \boldsymbol{I}[c]$$

- Multi-channel output, kernel size $C_{out} \times C_{in} \times m \times n$
 - The c'-th output channel is

$$\sum_{c=1}^{C_{in}} \kappa[c', c] * \boldsymbol{I}[c]$$

Connection with matrix multiplication

• 1D conv as Toeplitz matrix multiplication

$$(f * g)_n = \sum_{k=-M}^M f_{n-k}g_k$$

e.g., example in the right

$$= \begin{bmatrix} g_{-1} & 0 & \dots & & \\ g_{0} & g_{-1} & 0 & \dots & \\ g_{1} & g_{0} & g_{-1} & 0 & & \\ & \ddots & & & \\ 0 & & g_{1} & g_{0} & g_{-1} \\ 0 & & 0 & g_{1} & g_{0} \\ 0 & & 0 & 0 & g_{1} \end{bmatrix} \begin{bmatrix} f_{1} \\ f_{2} \\ f_{3} \\ \vdots \\ f_{N-1} \\ f_{N} \end{bmatrix}$$

• Exercise: 2D conv?

Translational Equivalence

- Shift the input by δ grids, output is also shifted by δ
- Proof in 1D continuous case: we know

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

Consider $\tilde{f}(t) = f(t - \delta)$,
 $(\tilde{f} * g)(t) = \int_{-\infty}^{\infty} \tilde{f}(\tau)g(t - \tau)d\tau$
 $= \int_{-\infty}^{\infty} f(\tau - \delta)g(t - \tau)d\tau$
 $= \int_{-\infty}^{\infty} f(\tau)g((t - \delta) - \tau)d\tau$
 $= (f * g)(t - \delta)$

Translational Equivalence

- Why we need that?
- For example objective detection
- If the the object shifts by δ
- Then the decision box should also shift by δ

Gradient w.r.t. Convolutional Kernel

• Consider single channel in, single channel out

$$\mathcal{D}[x, y] = \sum_{i, j \in \mathcal{N}} \kappa[i, j] \cdot \mathbf{I}[x + i, y + j]$$
$$\frac{\partial \mathbf{O}[x, y]}{\partial \kappa[i, j]} = \mathbf{I}[x + i, y + j]$$

• Chain rule

$$\frac{\partial \ell}{\partial \kappa[i,j]} = \sum_{x,y} \frac{\partial \ell}{\partial O[x,y]} \cdot \boldsymbol{I}[x+i,y+j]$$

Gradient w.r.t. Convolutional Kernel

$$\frac{\partial \ell}{\partial \kappa[i,j]} = \sum_{x,y} \frac{\partial \ell}{\partial O[x,y]} \cdot I[x+i,y+j]$$

• Consider $\frac{\partial \ell}{\partial O}$ as an image, correlating $\frac{\partial \ell}{\partial O}$ and I for $i, j \in \mathcal{N}$

 $\frac{\partial \ell}{\partial \kappa[1,1]} = \left(\frac{\partial \ell}{\partial \boldsymbol{O}} \star \boldsymbol{I}\right) [1,1]$

Gradient w.r.t. input

• To derive
$$\frac{\partial \ell}{\partial I[x,y]}$$
, note
 $\mathbf{O}[x,y] = \sum_{i,j\in\mathcal{N}} \kappa[i,j] \cdot \mathbf{I}[x+i,y+j]$
 $\Leftrightarrow \mathbf{O}[x-i,y-i] = \sum_{i,j\in\mathcal{N}} \kappa[i,j] \cdot \mathbf{I}[x,y]$
 $\frac{\partial \ell}{\partial \mathbf{I}[x,y]} = \sum_{i,j\in\mathcal{N}} \frac{\partial \ell}{\partial \mathbf{O}[x-i,y-j]} \cdot \kappa[i,j]$
• Consider $\frac{\partial \ell}{\partial \mathbf{O}}$ as an image, convolve $\frac{\partial \ell}{\partial \mathbf{O}}$ with κ

Pooling

- Max pooling and average pooling
- Down samples the image
- Variants
 - Stride
 - Padding
 - Dilation

Max Pooling

Take the **highest** value from the area covered by the kernel

Average Pooling

Calculate the **average** value from the area covered by the kernel

Translation Invariance

- Input translated by δ , output doesn't change
- Translate the zebra should maintain a decision that it exists
- Max Pooling achieves translational invariance (at least partly)

All input values change, But only 1 of 4 output values change

Gradient of Pooling

- $y = \max\{x_1, \dots, x_i, \dots\}$
- Suppose $\arg \max_{i} x_{i} = k$

• Then
$$\frac{\partial y}{\partial x_i} = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases}$$

Only the max position receives a gradient!

3	2	0	0
0	7	1	3
5	2	3	0
0	9	2	3

Agenda

- Introduction: Vision Tasks
- Building Blocks
- Convolutional Networks
- Beyond Image Classification

Basic network architecture

• Alternate between conv + activation and pooling

LeNet

Institute of Electrical and Electronics Engineers https://ieeexplore.ieee.org > document

Gradient-based learning applied to document recognition

by Y Lecun · 1998 · Cited by 61889 — This **paper reviews** various methods applied to handwritten character recognition and compares them on a standard handwritten digit...

<u>Video</u>, <u>colab</u>

AlexNet

Neural Information Processing Systems

https://proceedings.neurips.cc > paper > 4824-i... PDF

ImageNet Classification with Deep Convolutional Neural ...

by A Krizhevsky · Cited by 124370 — The specific contributions of this **paper** are as follows: we trained one of the largest convolutional neural networks to date on the subsets of ImageNet... 9 pages

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
<i>SIFT</i> + <i>FVs</i> [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

AlexNet

- Key innovations:
 - Local response normalization
 - Data augmentation
 - Dropout on layer 7 and 8
 - Momentum SGD

	Layer		Size	Kernel Size	Stride	Activation
Input	Image	1	227x227x3	-	-	-
1	Convolution	96	55 x 55 x 96	11x11	4	relu
	Max Pooling	96	27 x 27 x 96	3x3	2	relu
2	Convolution	256	27 x 27 x 256	5x5	1	relu
	Max Pooling	256	13 x 13 x 256	3x3	2	relu
3	Convolution	384	13 x 13 x 384	3x3	1	relu
4	Convolution	384	13 x 13 x 384	3x3	1	relu
5	Convolution	256	13 x 13 x 256	3x3	1	relu
	Max Pooling	256	6 x 6 x 256	3x3	2	relu
6	FC	-	9216	-	-	relu
7	FC	-	4096	-	-	relu
8	FC	-	4096	-	-	relu
Output	FC	-	1000	-	-	Softmax

Local response normalization

- For each spatial location (x, y), at channel i
- normalize over adjacent n channels

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

- Improve contrast in neighborhood
- dampen constant neighborhood
- Motivation in lateral inhibition

Reduce Overfitting

- Data Augmentation: introduce variations in the input image
 - Reflection, shift, ...
 - Other augmentations?

- Dropout
 - At training: Randomly zeros some activations
 - At testing: disabled
 - Effect: Ensemble many models

Momentum SGD

• Weighted moving average of gradient

$$\Delta_{s} = \beta \cdot \Delta_{s-1} + \nabla \ell(\boldsymbol{w})$$
$$\boldsymbol{w}_{s} = \boldsymbol{w}_{s-1} - \gamma \cdot \Delta_{s}$$

Illustration from this <u>blogpost</u>

Since AlexNet ...

• Other models • Models with highest Accuracy

Trend according to paperwithcode

VGG

Very Deep Convolutional Networks for Large-Scale Image ...

by K Simonyan · 2014 · Cited by 117289 — Our main contribution is a thorough evaluation of **networks** of increasing depth using an architecture with **very** small (3x3) **convolution** filters, ...

- smaller conv kernel, deeper
- Same receptive field size
 - More ReLU's (nonlinearity)
 - Fewer parameters
 - E.g, two 3x3 conv-layer v.s.

one 5x5 conv-layer

Table 1: **ConvNet configurations** (shown in columns). The depth of the configurations increases from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The convolutional layer parameters are denoted as "conv(receptive field size)-(number of channels)". The ReLU activation function is not shown for brevity.

ConvNet Configuration								
A	A-LRN	В	C	D	E			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
input (224×224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
		max	pool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
		max	rpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
	_	max	pool	_	_			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
		max	pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
	maxpool							
		FC-	4096					
		FC-	4096					
	FC-1000							
soft-max								

Going deeper

ArXiv https://arxiv.org > cs

[1409.4842] Going Deeper with Convolutions

by C Szegedy · 2014 · Cited by 56587 — We propose a deep convolutional neural **network** architecture codenamed "**Inception**", which was responsible for setting the new state of the art ...

1x1 convolution

arXiv https://arxiv.org > cs

[1312.4400] Network In Network

by M Lin · 2013 · Cited by 8887 — Abstract:We propose a novel deep network structure called "Network In Network" (NIN) to enhance model discriminability for local patches ...

- Weighted average of all channels
- Reduce the number of channels in inception net

Exercise

Input: 512×512 RGB image

Layer1: 3×3 filter with 16 output channels, stride=2, padding="same"

Layer2: 1x1 filter with 8 output channels

What is output shape?

Resnet

- Deeper may be good
- But harder to train

[1512.03385] Deep Residual Learning for Image Recognition

by K He \cdot 2015 \cdot Cited by 197465 — On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity.

Resnet

• One conjecture is reducing gradient vanishing

•
$$\frac{\partial \ell}{\partial x} = \frac{\partial \ell}{\partial y} \cdot \frac{\partial y}{\partial x} = \frac{\partial \ell}{\partial y} \cdot \left(\frac{d\mathcal{F}}{dx} + I\right)$$

 But the authors argue "optimization difficulty is unlikely

to be caused by vanishing gradients"

ResNext

CVF Open Access https://openaccess.thecvf.com > papers > Xie_A... PDF

Aggregated Residual Transformations for Deep Neural ...

by S Xie · 2017 · Cited by 11501 — A module in our **network** performs a set of **transformations**, each on a low-dimensional embedding, whose outputs are **aggregated** by...

• Multiple branches

Figure 1. Left: A block of ResNet [14]. Right: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

DenseNet

[1608.06993] Densely Connected Convolutional Networks

by G Huang · 2016 · Cited by 41724 — **DenseNets** have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature ...

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

Figure 1: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input.

What does the network learn?

Slide credit: Fei-fei Li et. al CS231n

Visualizing Filters

Visualizing Filters

Visualizing Filters

Implications

- The filters in lower layers are very "generic"
- They may be reused for another image set
- Recall estimation error (variance), due limited training data
- "reuse" a trained model for another task?

Transfer Learning

"knowledge learned from a task is re-used in order to boost performance on a related task"

Why it may work? Constrain to a smaller $\mathcal{F}' \cap \mathcal{F}$

Quote and Illustration from wiki

Deep Transfer Learning Recipe

- Step 1: train a model on a big dataset, e.g., imagenet classification
- Step 2: cut the upper layers (at least softmax classifier)

Deep Transfer Learning Recipe

- Step3: Swap in your own upper layer, and train on your own data
 - Option1: freeze some lower layers (e.g., conv layers)
 - Option2: freeze all lower layers

How it works

CNN Features off-the-shelf: an Astounding Baseline for ...

by AS Razavian · 2014 · Cited by 5976 — Abstract:Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful.

How it breaks

"when the source and target domains are unrelated, the transfer may fail forcefully"

On Task Relevance

• Taskonomy by Stanford

Task Similarity Tree Based on Transfering-Out

Figure 13: Task Similarity Tree. Agglomerative clustering of tasks based on their transferring-out patterns (i.e. using columns of normalized affinity matrix as task features). 3D, 2D, low dimensional geometric, and semantic tasks clustered together using a fully computational approach.

Agenda

- Introduction: Vision Tasks
- Building Blocks
- Convolutional Networks
- Beyond Image Classification

Object Detection based on Proposed Regions

Slide credit: Rice University CS6501

Faster R-CNN

Neural Information Processing Systems

https://papers.nips.cc > paper > 5638-faster-r-cnn-towa...

Faster R-CNN: Towards Real-Time Object Detection with ...

by S Ren · 2015 · Cited by 69884 — An RPN is a fully-convolutional network that simultaneously predicts object bounds and objectness scores at each position. RPNs are trained end-to-end...

• How to propose the regions?

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

classifier

Faster R-CNN

- Train the regional proposal network
- Binary Classifier: object in the region or not
- Regression: compare region vs groundtruth

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

Even faster

arXiv https://arxiv.org > cs

You Only Look Once: Unified, Real-Time Object Detection

by J Redmon · 2015 · Cited by 43213 — Abstract:We present **YOLO**, a new approach to **object detection**. Prior work on **object detection** repurposes classifiers to perform detection.

Figure 2: The Model. Our system models detection as a regression problem. It divides the image into an $S \times S$ grid and for each grid cell predicts *B* bounding boxes, confidence for those boxes, and *C* class probabilities. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

- S = 7 and B = 2 in the paper
- Bounding box is center position (x, y), size (h, w), and confidence
- *C* the number of object classes
- Faster than faster R-CNN
- But may fail for tiny object

Style Transfer

The Computer Vision Foundation

https://www.cv-foundation.org > papers > Gatys... PDF

Image Style Transfer Using Convolutional Neural Networks

by LA Gatys · 2016 · Cited by 5791 — In fact, our **style transfer** algorithm combines a parametric texture model based on **Convolutional Neural**. **Networks** [10] with a method to...

Discussion

- Why gram matrix captures style?
- What layers to transfer over?
- Why not initialize from content image?
- Multiple style?