
CS7150 Deep Learning
Jiaji Huang

https://jiaji-huang.github.io
01/20/2024



Recap of Last Lecture

• What is DL and why is it useful
• Cool Applications
• Images, speech, text, robotics, …

• PyTorch
• Auto-grad

• Linear Algebra, probabilities
• Linear Least Squares
• SVD
• Gradient, Chain rule
• Gaussian Distribution and its mixture
• Entropy, Cross Entropy



Agenda

• Machine Learning Paradigms
• Non-Parametric v.s. Parametric Models
• Linear Classifier
• Multi-layer Perceptron (MLP)



Supervised Learning

• Training: learns a model 𝑓: 𝒙 ⟼ 𝑦, from data like { 𝒙! , 𝑦! }
• Testing: Use the model to predict 𝑦 given 𝒙, i.e. )𝑦 = 𝑓(𝒙)
• Examples:
• Regression: numeric target

Example from this page

{5 yr, "Female"} →?

https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/


Supervised Learning

• Classification: categorical target

,       0

,       1

?



Supervised Learning

• Classification with structured target • Classification + regression
Speech recognition

Translation

Object detection



Unsupervised Learning

• Given input 𝒙, learn something about 𝑝"#$#(𝒙)
• Clustering (recap last lecture: infer the latent variable via EM)

• Generation: sample from 𝑝"#$#(𝒙)



Unsupervised Learning

• Dimension Reduction
• PCA
• Non-linear dimension reduction

Example from sklearn page

https://scikit-learn.org/stable/auto_examples/manifold/plot_swissroll.html


Reinforcement Learning

• Learning by interacting with environment, and
• Maximizing reward



Paradigms can be combined

• Semi-supervised learning
• Input: 𝒙", 𝒚" and {𝒙#}
• Output: 𝒚#’s
• Jointly modeling 𝒙" + 𝒙#

• Reinforcement Learning with 
Human Feedback (RLHF)

supervised
Illustration from here and here

https://www.v7labs.com/blog/semi-supervised-learning-guide
https://www.twine.net/blog/what-is-reinforcement-learning-from-human-feedback-rlhf-and-how-does-it-work/


Agenda

• Machine Learning Paradigms
• Non-Parametric v.s. Parametric Models
• Linear Classifier
• Multi-layer Perceptron (MLP)



Let’s focus on Supervised Learning in the following
•Training: learns a model 𝑓: 𝒙 ⟼ 𝒚, from data like 
{ 𝒙! , 𝒚! }
•Testing: Use the model to predict 𝒚 given 𝒙, i.e. 
)𝑦 = 𝑓(𝒙)



Non-parametric Model

• Doesn’t assume a specific form for 𝑓(𝒙)
• Example: Nearest Neighbor Classifier
• Stores all training data
• Take 𝑘-nearest neighbors
• Vote on the label by neighbors’ labels
• Question:

• How to decide 𝑘?
• What distance to use?

Illustration from here

https://medium.com/swlh/k-nearest-neighbor-ca2593d7a3c4


Hyper-parameters

• The 𝑘 and choice of distance
• Dangerous idea:
• Try a bunch, and check which works best for testing
• As testing data couldn’t be access at training

• If we have a validation set, use that
• If not, 𝑁-fold cross validation

Illustration from sklearn page

https://scikit-learn.org/stable/modules/cross_validation.html


KNN is only for toy problems though

• Consider 128x128 Image classification
• Flattening the 2D images leads to 16,384 dimensional vector!

• Many irrelevant dimensions
• E.g.,Background behind the object

Illustration from here and here

https://www.rawpixel.com/search/dog?page=1&path=_topics&sort=curated
https://www.pexels.com/search/dog/


KNN is only for toy problems though

• Curse of dimensionality
• Most volume of hyper-sphere concentrates near its shell
• Need many training examples to well cover the space

• There are hubs, very popular nearest neighbors

Illustration from here

https://builtin.com/data-science/curse-dimensionality


KNN is only for toy problems though

• Expensive:
• stores all training data,
• computational cost ∝ #samples × dimension
• Resort to approximate NN search

• Dimension Reduction necessary
• Recall PCA



Parametric Model

• Specify explicit form of 𝑓(𝒙; 𝜽) with parameter 𝜽
• Example:
• linear regression 𝑓 𝒙 = 𝒘$𝒙 + 𝑏, 𝜽 = {𝒘, 𝑏}
• Logistic regression
• Softmax classifier
• Deep nets

• Train: learn 𝜽 from training samples {(𝒙! , 𝑦!)}
• Test: for testing sample 𝒙, predict using 𝑓(𝒙)

We will talk about them later this lecture



Linear regression

• Parametric form 𝑓 𝒙 = 𝒘&𝒙 + 𝑏
• Learn 𝒘 and 𝑏 from samples {(𝒙! , 𝑦!)}, by solving

min
𝒘,)

8
!*+

,

𝒘&𝒙! + 𝑏 − 𝑦! -

≡ ;𝑿=𝒘 − 𝒚
-

Where ;𝑿 =
𝒙+& , 1
⋮

𝒙,& , 1
, =𝒘 = 𝒘

𝑏 , 𝒚 =
𝑦+
⋮
𝑦,

• Revisit last lecture, =𝒘∗ = ;𝑿/𝒚

𝒙

𝑦



Degree of the polynomial

“With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.”

--- John von Neumann
• Lower degree
• Pros: avoid overfitting
• Cons: less powerful

Fermi-Neumann elephant
𝑦

𝑥

• Higher degree
• Pros: more powerful
• Cons: overfits

𝑦

𝑥

https://en.wikipedia.org/wiki/Von_Neumann%27s_elephant


Generalization

• The ability to predict well on unseen samples
• Model family ℱ = {𝑓𝜽 𝒙 }
• Generalization error: expected error/loss on a test input
• ≈ modeling error + estimation error

ℱ

True function 𝑔(𝒙)

modeling error
estimation error

Cartoon adapted from OMCS lecture slides

https://sites.cc.gatech.edu/classes/AY2023/cs7643_spring/slides/L2_LinearClassifiers.pdf


Bias Variance trade-off View

• Modeling error is bias
• Estimation error is variance w.r.t. training data
• bigger ℱ : modeling error↓, but estimation error ↑

ℱ

True function g(𝒙)

modeling error
estimation error

Cartoon adapted from OMCS lecture slides

https://sites.cc.gatech.edu/classes/AY2023/cs7643_spring/slides/L2_LinearClassifiers.pdf


Bias Variance trade-off View

• 𝑦 = 𝑔 𝒙 + 𝜀, 𝜀 noise with mean=0, std=𝜎
• Learn a predictor )𝑦 = 𝑓(𝒙;𝒟) by minimizing Mean Square Error 

(MSE) on training set 𝒟 = { 𝒙! , 𝑦! }
• The generalization error is
𝔼𝒟,2 𝑦 − )𝑦 - = 𝔼𝒟,2 𝑔 𝒙 − 𝑓(𝒙;𝒟) + 𝜀 -

= 𝔼𝒟 𝑔 𝒙 − 𝑓 𝒙;𝒟 - + 𝔼2[𝜀-]
= 𝔼𝒟 𝑔 𝒙 − 𝔼𝒟𝑓 𝒙;𝒟 + 𝔼𝒟𝑓 𝒙;𝒟 − 𝑓 𝒙;𝒟 - + 𝜎-
= [𝑔 𝒙 − 𝔼𝒟𝑓 𝒙;𝒟 ]-+𝔼𝒟[𝑓 𝒙;𝒟 − 𝔼𝒟𝑓 𝒙;𝒟 ]-+𝜎-

bias2 variance Irreducible error



More Interpretations

• How to generalize well?
• Reduce bias: small training loss, rich ℱ
• Reduce variance: small gap between testing and training loss
• Bigger training set
• Regularization: constrain to a subset of ℱ

Illustration from textbook chapter 5

https://www.deeplearningbook.org/contents/ml.html


20 years of research in Learning Theory oversimplified

If you have: 
Enough training data 𝒟 and 
ℱ is not too complex

Then:
probably we can generalize to unseen test data

Caveats:
A number of recent empirical results (Zhang et. al) question our 
intuitions built from this clean separation.

Slides adapted from OMCS lecture slides (page 34)

https://arxiv.org/abs/1611.03530
https://sites.cc.gatech.edu/classes/AY2023/cs7643_spring/slides/L2_LinearClassifiers.pdf


Exercise

• Judge overfitting/underfitting from learning curves

Training steps

Loss/error
training
testing

Training steps

Loss/error
training
testing



Agenda

• Machine Learning Paradigms
• Non-Parametric v.s. Parametric Models
• Linear Classifier
• Multi-layer Perceptron (MLP)



Classification problem

• Before deep learning, we hand-craft the features, e.g., histogram
• With deep learning, we learn the features jointly with classifier

Feature extraction classifierfeatures Predicted label

Illustration of histogram from this page

https://www.creative-photographer.com/read-camera-histogram/


Binary classification: Logistic Regression

• Use a hyperplane to separate the two classes
• 𝑝 𝑦 = 1 𝒙 = 𝜎(𝒘&𝒙 + 𝑏)

• 𝜎 𝑧 = +
+34!"

: sigmoid function

• 𝒘&𝒙 + 𝑏: logit 𝜎(-)

Illustration from OMCS lecture 2 slides

https://sites.cc.gatech.edu/classes/AY2023/cs7643_spring/slides/L2_LinearClassifiers.pdf


Training loss

• Recall Cross-entropy
𝔼5~7#$%$[− log 𝑝(𝑦)]

• Discretize for each data sample, that’s
1
𝑁
8
!*+

8

−𝑝"#$# 𝑦! = 1 log 𝑝 𝑦! = 1|𝒙!

−𝑝"#$# 𝑦! = 0 log 𝑝 𝑦! = 0|𝒙!
• Compactly, that’s

1
𝑁
8
!

−𝑦!log 𝑝 𝑦! = 1|𝒙! + (𝑦! − 1) log[1 −𝑝 𝑦! = 1|𝒙! ]



Gradient

1
𝑁
8
!

{−𝑦!log 𝑝 𝑦! = 1|𝒙! + (𝑦! − 1) log[1 − 𝑝 𝑦! = 1|𝒙! ] ≡ ℓ!}

• Derive 9ℓ&
9𝒘

and 9ℓ&
9)

for 𝑖 ∈ 𝔅 (some mini-batch)

• Then update

𝒘 ← 𝒘− 𝛾 V
1
𝔅
8
!∈𝔅

𝜕ℓ!
𝜕𝒘

, 𝑏 ← 𝑏 − 𝛾 V
1
𝔅
8
!∈𝔅

𝜕ℓ!
𝜕𝒃

• Exercise: derive the gradients
• Hint: denote 𝑝" = 𝑝 𝑦" = 1|𝒙" , and invoke chain rule



Multi-class: softmax Classifier

• Multiple hyper-planes
• Defined by 𝒘= , 𝑏= , 𝑐 = 1,… , 𝐶
• Logits: {𝒘=

&𝒙+𝑏=}
• 𝑝 𝑦 = 𝑐 𝒙 =softmaxc({𝒘=

&𝒙+𝑏=})

• Softmaxc({𝑧=})= 4"'

∑&()
* 4"&

Illustration adapted from OMCS lecture 2 slides 

https://sites.cc.gatech.edu/classes/AY2023/cs7643_spring/slides/L2_LinearClassifiers.pdf


Softmax

• E.g., C=3, logits {-5, 0, 5} corresponding to class ID: 0, 1, 2
• P(y=0)= .!"

.!"/.#/." = 4.5094×1001

• P(y=1)= .#

.!"/.#/."
= 6.6925×1002

• P(y=2)= ."

.!"/.#/." = 9.9326 ×1003

• May result in underflow
• Do log 𝑝 instead
• In pytorch, that’s torch.nn.LogSoftmax

Check manual

https://pytorch.org/docs/stable/generated/torch.nn.LogSoftmax.html


Training Softmax Classifier

• Cross Entropy
𝔼5~7#$%$[− log 𝑝(𝑦)]

• Discretize for each data sample, that’s
1
𝑁
8
!*+

8

− log 𝑝(𝑦 = 𝑦!|𝒙!)

• The minimum loss? 0
• The maximum loss? +∞
• Loss at initialization? log 𝐶



Derive the Gradient

• Denote logits 𝑧= = 𝒘=
&𝑥 + 𝑏

• And 𝑝= = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥=({𝑧=})
• ℓ = − log 𝑝 𝑦 𝒙 = log∑=*+? 𝑒@' − 𝑧5

• 9ℓ
9𝒘'

= e 𝑝5 − 1 V 𝒙, 𝑐 = 𝑦
𝑝= V 𝒙, 𝑐 ≠ 𝑦

• Practically
• moves 𝒘4 closer to 𝒙 if it’s label 𝑦 = 𝑐
• Otherwise, move away from 𝒙



Discussion

• Does initialization matter?
No, the function is convex
• What if the number of classes is very big?

Hierarchical softmax, sampled softmax



Reduce Overfitting in Linear classifiers

• Consider two logistic regression models
ℳ+: 𝑝 𝑦 = 1 𝒙 = 𝜎(𝑥+ + 𝑥-)

ℳ-: 𝑝 𝑦 = 1 𝒙 = 𝜎(10𝑥+ + 10𝑥-)
• Training data is better distinguished by ℳ-

Example from Quora page

𝑥!

𝑥"

𝑥! + 𝑥"

https://www.quora.com/Why-will-a-large-number-of-weights-cause-overfit-in-a-multi-layered-perceptron


Reduce Overfitting in Linear classifiers

• But ℳ- is too certain
•ℳ- can be very wrong for some test samples

Example from Quora page

𝑥!

𝑥"

𝑥! + 𝑥"

https://www.quora.com/Why-will-a-large-number-of-weights-cause-overfit-in-a-multi-layered-perceptron


Reduce Overfitting in Linear classifiers

• Use smaller weights
• Weight decay

Cross-entropy loss + 𝜆 𝒘 -

• Sparsity
Cross-entropy loss + 𝜆 𝒘 +



Recap of SVM

• Instead of modeling 𝑝(𝑦|𝑥),
• Learn a hyperplane to separate the classes with

maximum margin
• Samples on the margin are called support vectors
• Learn 𝒘 by solving:

min
1
2
𝒘 -

𝑠. 𝑡. (2𝑦! − 1)(𝒘&𝒙! + 𝑏) ≥ 1
• Predict by )𝑦 = 1 if 𝒘&𝒙 + 𝑏 ≥ 0, 0 otherwise

Source: wikipedia

https://en.wikipedia.org/wiki/Support_vector_machine


Connect SVM to Logistic Regression

• SVM only asks for good separation
• i.e., if data label 𝑦 = 1, SVM ask

𝑝(𝑦 = 1|𝑥)
𝑝(𝑦 = 0|𝑥)

≥ 𝑐

• Adopting 𝑝 𝑦 = 1 𝑥 = 𝜎(𝒘&𝒙 + 𝑏), that’s
𝒘&𝒙 + 𝑏 ≥ log 𝑐

• Non-unique solution, so we put a penalty 𝒘 -

Adapted from CSC2515 slides

https://www.cs.toronto.edu/~kswersky/wp-content/uploads/svm_vs_lr.pdf


Agenda

• Machine Learning Paradigms
• Non-Parametric v.s. Parametric Models
• Linear Classifier
• Multi-layer Perceptron (MLP)



linearly Separable vs Non-separable

• linearly separable (left) and nonlinear separable (middle)

• Logistic regression fails for the right case
• Huge modeling error (bias)



Multi-layer Perceptron (MLP)

• We could use multiple lines to segregate the classes
• For each line, 
• assign 0 for the side with dots
• assign 1 for the side with circle

• So the center region get an all-0 coding
• All other regions get at least one coding of 1
• Adding the 6 codings suffice to distinguish



Multi-layer Perceptron (MLP)

• How do we assign the 1’s and 0’s?
• Need a (nonlinear) activation function
• Rectifier, i.e.,ReLU
• More terminologies:
• The network is also called feedforward network
• The linear layer is also called as fully connected layer

𝑅𝑒𝐿𝑈 𝑥 = max(𝑥, 0)



Another example: modeling XOR

• Find a model space ℱ that capture this setup
• i.e., no modeling error
• ℱ cannot be a space of linear models
• As a single line cannot separate the two classes

Plot from deep learning textbook chapter 5

https://www.deeplearningbook.org/contents/mlp.html


Modeling XOR

• 𝑓 𝑥 = 𝒘&𝑅𝑒𝐿𝑈(𝑾&𝒙 + 𝑐)

•𝑾 = 1 1
1 1

• 𝑐 = 0
−1

• 𝒘 = 1
−2

Plots from deep learning textbook chapter 5

https://www.deeplearningbook.org/contents/mlp.html


Generalize ReLU

• Drawback of ReLU
• Zero gradient when not activated
• No learning happens

• Leaky ReLU, fix a small 𝑎 > 0
• Parametric ReLU (PReLU), learn 𝑎

∇= 0

𝜎(𝑥)

𝑥

𝜎 𝑥 = 𝑥

𝜎 𝑥 = 𝑎 - 𝑥



Generalize ReLU

• Exponential Linear Units (ELU)

• 𝜎 𝑥 = q𝑥, 𝑥 > 0
𝛼 𝑒A − 1 , 𝑥 ≤ 0 (𝛼 > 0)

• push mean unit activations closer to zero
• Shown to speed up learning                    

Clevert et. al 2016

https://arxiv.org/pdf/1511.07289.pdf


Generalize ReLU

• But still it’s non-differentiable at zero
• Gaussian-error Linear Unit (GELU): 𝜎 𝑥 = 𝑥 V Φ(𝑥)
Φ(𝑥) is the CDF of standard Gaussian distribution
• Used in BERT 

Plot from wikipage

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)


Other activation functions

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 =
1

1 + 𝑒#$ 𝑡𝑎𝑛ℎ 𝑥 =
𝑒$ − 𝑒#$

𝑒$ + 𝑒#$

Note: sigmoid and tanh are called squashing function as their 
output range is bounded

𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 𝑥 = ln(1 + 𝑒$)



Recap end-to-end pipeline

Feature extraction classifierfeatures Predicted label

Illustration of histogram from this page

Logistic regression
softmax classifier
SVM
…

https://www.creative-photographer.com/read-camera-histogram/


As composite function

• Each layer compute
𝒙(C) = 𝑓 C (𝒙(CE+)) = 𝜎(𝑾(C)𝒙(CE+))

• Over all layers, a composite function
𝑓(F) ∘ 𝑓 FE+ ∘ ⋯ ∘ 𝑓 + (𝒙)

• Last layer is your favorite classifier with a loss
• Trained by back-propagation

Cartoon from CSC lecture 5 slides

ℓ%&

https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec5.pdf


Pytorch Implementation

• Define and instantiate the network

original example here, colab notebook here

One hidden layer

The softmax classifier

Log softmax avoids underflow

https://www.kaggle.com/code/justuser/mnist-with-pytorch-fully-connected-network/notebook
https://colab.research.google.com/drive/1mBwAsPBTuS9_Unjx-uIEzPKl41itRpM6


Pytorch Implementation
• Define (cross-entropy) loss, optimizer, and train by SGD

Forward pass

Cross-entropy loss
Auto grad
Optimizer step

Don’t forget this!

original example here, colab notebook here

https://www.kaggle.com/code/justuser/mnist-with-pytorch-fully-connected-network/notebook
https://colab.research.google.com/drive/1mBwAsPBTuS9_Unjx-uIEzPKl41itRpM6


Universal Approximation Theorem

Slide page from here

https://www.cs.rpi.edu/~magdon/courses/LFD-Slides/SlidesLect20.pdf


Universal Approximation Theorem (Simplified)

A feedforward network with 
• a linear output layer, and 
• at least one hidden layer, with enough hidden units
can approximate any function from one finite-dimensional space to 
another
Caveats:
1. Although modeling error is 0, there may still be estimation error
2. Optimizer may fail to find the correct parameter values



Counting (linear) regions

Consider one layer:
• 𝑅𝑒𝐿𝑈(𝒘&𝒙 + 𝑏) defines a hyper plane
• One side deactivated (all 0)
• The other side activated: computes 𝒘&𝒙 + 𝑏



Counting (linear) regions

• 𝑛 𝒘’s: separate the space into multiple regions

• More generally, 𝒙 ∈ ℝ!, at most

&
"#$

!
𝑛
𝑖

regions



The effect of more layers

• The 2nd layer works on each of the regions defined by the first layer

• 𝐿 layer, each 𝑛 hidden units: Number of regions 𝑂 𝑛
𝑑

"(FE+)
𝑛"

Montufar et. al, 2014 

https://proceedings.neurips.cc/paper_files/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf


Shallow vs Deep

Plot from Goodfellow et. al, 2014

Increasing the number of parameters in shallower models does not allow 
such models to reach the same level of performance as deep models, 
primarily due to overfitting.

• (linear) Regions grows 
exponentially w.r.t 
depth

• Deeper model use 
fewer parameter to 
achieve necessary 
number of (linear) 
regions

https://arxiv.org/pdf/1312.6082.pdf

