Deep Reinforcement Learning

Kaixiang Lin

Email: kaixianglin.cs@gmail.com



https://kaixianglin.github.io/

Outline

Why RL?
What is RL?
How to solve RL?

- Dive into RL algorithms, from basics to the SOTA.
- RL algorithm overview

Real World Application: RLHF in ChatGPT



Part O: Why RL?

From Games to Real World Impact



Human Level Performance on Games

- In 2015, Deep Learning’s impact propagate
to Reinforcement Learning. We have human
level performance on Atari games.
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Video Pinball
Boxing
Breakout
Star Gunner

Human Level Performance on Games®::

- In 2015, Deep Learning’s impact propagate
to Reinforcement Learning. We have
human level performance on Atari games.
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http://www.youtube.com/watch?v=V1eYniJ0Rnk

Mastering the game of Go

- In 2016, AlphaGo beats world Champion
Lee Sedol. 4-1 in a five-game Go match.

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison', Arthur Guez', Laurent Sifre!, George van den Driessche’,

Julian Schrittwieser!, loannis Antonoglou!, Veda Panneershelvam’, Marc Lanctot’, Sander Dieleman', Dominik Grewe',
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach’, Koray Kavukcuoghu’,

hore Graepel’ & Demis Hassabis'




Human-level ChatBot

- In 2022, ChatGPT reveals the new era
of Generative Al.

Training language models to follow instructions
with human feedback
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Human-level ChatBot

- In 2022, ChatGPT reveals the new era
of Generative Al.

Training language models to follow instructions
with human feedback
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Part |. Key Concepts

What is RL? What RL is solving?



Where does RL stand in ML?

Supervised

Unsupervised
Learning

Learning

Machine
Learning

Reinforcement
Learning

CF:David Silver's RL slides


https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

Where does RL stand in ML?

Static data, with labels Static data, without labels

)

Supervised
Learning

Unsupervised
Learning

Machine
Learning

Reinforcement
Learning

Non-stationary data

data collected from the
interaction between RL model
and environment, when we

: updating RL model, our data
CF-David Silver's RL slides distribution is also changing.

No supervision, only a
reward signal (scalar).


https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

What is RL

Agent

- Agent interacting with environment: .
State, Reward Action

- Ateverystept, S, Tt a:

- Agent seeing state of the world,

- Then agent deciding taking an action, E"Vim"mentJ

- The environment transits to next state, Agent-environment interaction loop.

- Agent might receive a reward from the world.
CF:OpenAl Spinning Up

- The goal of agent is to maximize the cumulative reward.


https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-concepts-and-terminology

What is RL?

Let’s look at an example!

Goal: kill the opponent.
State: board
Action: move around or lay a bomb.
Reward: -2 for each step,
100 for killing opponent.
e Horizon: finite.

https://www.pommerman.com



https://www.pommerman.com/

What is RL?

- Agent and Environment

- Agent: the man.

- Environment: the map.

https://www.pommerman.com



https://www.pommerman.com/

What is RL?

States and Observations Pommerman OO X el

- Astate sHis-acomplete description of

- An observation o is a partial description of a state
which may omit information.

- E.g., the part of map that man see.




What is RL?

States and Observations Pommerman

- Astate s is a complete description of
the state of the world.
E.g., the entire status of map at a time step.

- An observation o is a partial description of a state
which may omit information.
- E.g., the part of map that man see.
- If observation = state, we say that the environment
- isfully observed.

- o.w.itis partially observed.

For simplicity, across this course, we use fully observed setting

CF: ChatGPT

oo




What is RL?

Action spaces and Policies Pommerman 0o o o

- Action spaces: The set of all validation actions.
- E.g., move up, right, left, down, lay a bomb.
- Policies:

- E.g., Given what Pommerman see, red agent lay a bomb

az ~ m(-|s¢)




What is RL?

t=0 t=5

Trajectories( 7 ), Transition Probabilities

- Atrajectory is a sequence of states and actions
in the world.

T = (80, ap, S1,Q1, )

- Transition Probabilities.
Given state s _t, if agent take action a_t, what’s
the probability of next states. (can be deterministic)

st+1 ~ P(-]st, ar).




What is RL?

Reward, Return.

The reward function R is a mapping from the
current state of the world, the action just taken, and
the next state of the world, to a scalar.

re = R(8¢, a4, Se41)
It's usually simplified as 7t = R(st,az)

The goal of the agent is to maximize some notion of
cumulative reward over a trajectory.

r(s0, a0)=0

r(s10, a10)=100




RL Formulation

Markov Decision Process (MDP)

- Setof states S
- Setof actions A
- Transition function P(s’| s, a)

- Markov Property: future states
only depends on current states
and action.

- Reward function R(s, a, s’)
- Start state sO

- Discount factor: Y

- Horizon: H
H
- Goal: maIWE[nytR(S,,,AhSz+1)|7r]
t=0
alternatively

J(mg) = [, P(r|0)R(7)

Agent

State, Reward Action

S¢, Tt Qg

Environment]

Agent-environment interaction loop.

CF:OpenAl Spinning Up

Finite horizon Infinite horizon

T
R(r) = 37 Risi,a1) R(r) =) _'n.

t=0 t=0


https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-concepts-and-terminology

RL Formulation

J(mg) = |, P(7|0)R(7)

Trajectory probability P(7|0) = po(so)HfzoP(st+1|St,at)ﬂe(at|8t)

Trajectory reward

B(r)= Z R(s¢,a4)

Goal of RL : " = arg max J(7)

™

State

a



Value functions - On Policy

- the expected return if you start in that state or state-action pair, and then act
according to a particular policy forever after

State-Value function

Vi(s) = E [R(T)[so = s]

T~




Value functions - On Policy

- the expected return if you start in that state or state-action pair, and then act
according to a particular policy forever after

State-Value function i
V7T(s) = E [R(7)[so = s]

T~

71

Action-Value function

Q" (s,a) = E [R(7)|so = s,a0 = a]

T~
QW(Sa al): a

The on-policy value function evaluates the

performance of current policy \pi.




Value functions - On Policy

- the expected return if you start in that state or state-action pair, and then act
according to a particular policy forever after

State-Value function

71

Action-Value function

Q" (s,a) = E [R(7)|so = s,a9 = a]

T~
Connection of two value functions:
Vi(s) = E [Q"(s,a)]
anvT

State value function is expectation of as
. . . . ™
Action value function over all possible actions. Q (8, a,3)




Value functions - Optimal Policy

- the expected return if you start in that state or state-action pair, and then act
according to the best policy after that.

State-Value function V*(s) =max E [R(7)]|sy = s]
™ T~
71
Action-Value function Q" (s,a) = max E [R(7)]|sy = s,a9 = a]

™ T~

The performance of best policy.




Value functions - Optimal Policy

- the expected return if you start in that state or state-action pair, and then act
according to the best policy after that.

State-Value function V*(s) =max E [R(7)|sy = s]
™ T~T
71
Action-Value function (‘?*(37 a) = max E [R(T) ‘30 =S,ap = a]

™ T~

Connection of two value functions:

V*(s) = max Q" (s, a)
a
State value function is max of as
Action value function over all possible actions. QW(S, a,3)




Bellman Equations - On policy

- The value of your starting point is the reward you expect to get from being there, plus the value of
wherever you land next.

Vi(s) = E [r(s,a) +7V7(s)],

anT

S,NP ’L'l
Q"(s,a) = E |r(s,a)+v E [QW(S/,G,/)]:| &
S - a’' ~TT
/ State s’ 73
Current time step t Next time step t+1 :




Bellman Equations - Optimal policy

- The value of your starting point is the reward you expect to get from being there, plus the value of
wherever you land next, following the optimal policy.

Vi(s) =max E [r(s,a) +~yV*(s)],

a g'~P T]
Q" (s,a) = S’E:P [7‘(.9, a) + max Q" (s, a')] T

/

Current time step t

State s’

Next time step t+1




Bellman Equations - Optimal policy

- The value of your starting point is the reward you expect to get from being there, plus the value of
wherever you land next, following the optimal policy.

State s’

Whether we have max over actions differentiates
the on-policy vs optimal value function Bellman as
Equation.




Key Concepts

RL is learning by trial and error.

Bellman Equation: Relation between current state and future state.
Exploration & Exploitation trade off

On-policy vs Off-policy

Online vs offline vs Hybrid

Bias and Variance trade off



Part II: How to solve RL?



RL Algorithms (What we will cover?)

e Exact methods
o Value Iteration & Policy iteration

e Deep RL algorithms [Model-free, Online approach]

o Policy gradient.
o Actor acritic.

o Proximal Policy Optimization.



RL Algorithms (What we will cover?)

e Exact methods
o Value Iteration & Policy iteration
e Deep RL algorithms [Model-free, Online approach]

o Policy gradient.
o Actor acritic.

o Proximal Policy Optimization.



Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) =
V*(3,3) =
V*(2,3) =
V*(1,1) =
V*(4,2) =



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) = 1
V*(3,3) =
V*(2,3) =
V*(1,1) =
V*(4,2) =
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Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) = 1
V*(3,3) =
V*(2,3) =
V*(1,1) =
V*(4,2) =
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Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) = 1
V*(3,3) = 1
V*(2,3) =
V*(1,1) =

V*(4,2) =
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Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) = 1
* — Starting at (3,3), acting optimally (i.e., moving right), reach
v (3’3) (4,3) deterministically, then get +1 reward.
V*(2,3) =
V*(1,1) =
1 2 3 4
V*(4,2) =

CF Eoundations of Deep RL 6 lectures series
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Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) = 1
* — Starting at (3,3), acting optimally (i.e., moving right), reach
v (3’3) 1 (4,3) deterministically, then get +1 reward.
V*(2,3) =
V*(1,1) =
1 2 3 4
V*(4,2) =

CF Eoundations of Deep RL 6 lectures series
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Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) = 1
V*(3,3)= 1
* -
v (2’3) - 1 Similarly for (2,3) and (1, 1), the optimal policy is to move to
(4,3) directly and collect reward 1.
V*(1,1) = 1

V*(4,2) =

CF Eoundations of Deep RL 6 lectures series
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Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) = 1
V*(3,3) = 1
V*(2,3) = 1
V*(1,1) =



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma=1, H=100

V*(4,3)= 1

V*(3,3)= 1

V*(2,3) = 1 We are using the summation of trajectory reward to compute
value function.

V¥1,1) = 1

What if we use Bellman equation?

V*(4,2) = -1

CF Eoundations of Deep RL 6 lectures series
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Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].
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Let’s assume:
actions deterministically successful, gamma =1, H =100

V*(4,3)= 1

V*(3,3)= 1

V*(2,3) = 1 We are using the summation of trajectory reward to compute
value function.

V¥1,1) = 1

What if we use Bellman equation?

V*(4,2) = -1

CF Eoundations of Deep RL 6 lectures series
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Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministical

V*(4,3) = 1

uccessful, gamma=1, H=100

V*(3,3)= 1 v*(2,3) =r(s = (2,3),a = moving up) + 7 * V*(3,3) -
V*(2,3) = 1

V¥(1,1) = 1

V*(4,2) = -1



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) = 1

V*(3,3) = 1 V*(2,3) =r(s=(2,3),a = moving up) + v *x V*(3,3) :
V*(2,3) = 1 0 "
V*(1,1) = 1

V*(4,2) = -1



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [sp = 5]

us T~

Bellman equation: V*(s) =max B [r(s,a) +yV*(s')].

a s'~P

Let’s assume:
actions deterministically successful, gamma =1, H=100

V*(4,3) = 1
V*(3,3) = 1
V*(1,1) = 1

V*(4,2) = -1

CF Eoundations of Deep RL 6 lectures series
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Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a g~P

Let’s assume:

actions successful w/probability 0.8, gamma =0.9, H = 100
V*(4,3) =
V*(3,3) =
V*(2,3) =
V*(1,1) =
V*(4,2) =



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P
Let’s assume:
actions successful w/probability 0.8, gamma =0.9, H = 100
V*(4,3)= 1

V*(3,3) =0.8% 0.9 % V*(4,3) + 0.1 0.9 % V*(2,3) + 0.1 0.9 V*(3,2)

V*(2,3) = Taking best action from (3, 3): moving right.
V*(1,1) =
V*(4,2) =

CF Eoundations of Deep RL 6 lectures series



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Computing Optimal Value Function

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P
Let’s assume:
actions successful w/probability 0.8, gamma =0.9, H = 100
V*(4,3)= 1

V*(3,3) =0.8% 0.9 % V*(4,3) + 0.1 0.9 % V*(2,3) + 0.1 0.9 V*(3,2)

V*(2,3) = Recursive equation to the neighboring states
V*(1,1) =
V*(4,2) =

CF Eoundations of Deep RL 6 lectures series



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Value lteration

Indexing by how many steps left in the future, if O, means no more
steps left for us in the future. We initialize it by O.

V{s) = optimal value for state s when H=0

= V' (s) =0 Vs

V*(s) = optimal value for state s when H=1

" Vi(s)=max)  P(s'|s,a)(R(s,a,8') + V5 (s)

" r(s) T optimal Value for state s when H=2

T Vi(s) = mgxz P(s'|s,a)(R(s,a,s") + V7' (s"))
" VX (s) = optimal value for state s when H = k

Vi (s) = max > P(s'1s,a)(R(s,a,8") +7Vi1(s"))

CF Foundations of Deep RL 6 lectures series


https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Value lteration

o VO* (s) = optimal value for state s when H=0

" Decomposing to immediate reward, and one time step
- VE) (S) =0 Vs less time step left¥alue function.

= V*(s) =optimal value for state s wh

" Vi(s) =max ) P(s']s, 0)(R(s,a,5) + 4V5 (s))
" r(s) T optimal Value for state s whenH=

" V(s) = maxz P(s'|s,a)(R(s,a,s’) + Vi (s')And then averaged across all
R possible neighboring states.
" VX (s) = optimal value for state s when H = k
k

Vi (s) = max > P(s'1s,a)(R(s,a,8") +7Vi1(s"))

CF Foundations of Deep RL 6 lectures series


https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Value iteration in grid world

Recall the definition of Optimal Value function  V*(s) = max E [R(7) [so = 5]

us T~

Bellman equation: V*(s) =max E [r(s,a) +7V*(s)].

a s'~P
Let’s assume:
actions successful w/probability 0.8, gamma =0.9, H = 100
V*(4,3)= 1
V*(3,3)=0.8%0.9% V*(4,3) +0.1%0.9% V*(3,3) + 0.1 x0.9% V*(3,2)

V*(2,3) = Revisit our previous example
VD= V() = max Y P(s]s,a) (R(s,a,8) + Vi (5)
V*(4,2) = &

CF Eoundations of Deep RL 6 lectures series



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Value lteration

Algorithm:

Start with Vo (s)=0 for all s.
Fork=1, .., H:

For all states sin S:
Vi (s) < maxZP(s’|s, a) (R(37 a,s’) + ’YVk*—l(S’))

iy (8) < arg ma,xz P(s'|s,a) (R(s,a,s") +vVi_1(s"))

This is called a value update or Bellman update/back-up



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Value lteration

Algorithm:

Start with VO*(S) — () foralls.

Fork=1, .., H: Converge at infinite horizon: H = oo

For all states sin S:
Vi (s) < maxZP(s’|s, a) (R(37 a,s’) + ’YVk*—l(Sl))

iy (8) < arg ma,xz P(s'|s,a) (R(s,a,s") +vVi_1(s"))

This is called a value update or Bellman update/back-up



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Q-Value lteration

Bellman Equation:
Q*(s,a) = ) P(s'|s,a)(R(s,a,5') +ymax Q*(s',a))
Q-Value lteration:

Qis1(5,0) « 3 P(s|s,a)(R(s,a, 8) + ymax Qi (s',a'))



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Q-Value lteration

Bellman Equation:

Q*(s,a) = Y _P(s'|s,a)(R(s,a,s") + ymax Q*(s',a’))
Q-Value lteration:

Qiss(s0) ¢ 3 P(s/l ) Rls,0,) + 7 max Qi(s',a)) |

*

In Tabular cases, Bellman Backup -> Value iteration.
In large-scale cases, Bellman Backup -> Regression target for Q-learning
Similar for learning state value function, we will see soon.

CF Foundations of Deep RL 6 lectures series


https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Policy Iteration

Policy evaluation for current policy 7T :

= Iterate until convergence

Vi (s) = ) P(s'|s,mi(s)) [R(s, m(s), 8") + V™ ()]

Policy improvement: find the best action according to one-step
look-ahead

mh41(s) ¢ argmax Y P(s'|s, a) [R(s, a, ') + V™ ()



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

Policy Iteration

Difference value iteration between policy evaluation.

/

= Policy evaluatiof for current policy /T :
« Vi(s) e max Y P(s'ls, a) (R(s, 0, 5) + 7Viy (s))

VIt (s) « S P(s'|s, mi(s)) [R(s

m Policy improvement: find the best action according to one-step
look-ahead

mi41(s) ¢ argmax Y P(s']s,a) [R(s, a,5') + 7V ™ (s)]



https://www.youtube.com/playlist?list=PLwRJQ4m4UJjNymuBM9RdmB3Z9N5-0IlY0

RL Algorithms (What we will cover?)

e [Exact methods
o Value Iteration & Policy iteration
e Deep RL algorithms [Model-free, Online approach]

o Policy gradient.
o Actor acritic.

o Proximal Policy Optimization.



Policy Gradient

Recall Goal of RL

Trajectory probability

Trajectory reward

J(mg) = [, P(T|6)R(T)
P(710) = po(so)IT{_P(st41]5t, ar)me(ar|se)

R(r)= Z R(st, at)

|_State

72

73



Policy Gradient

Recall Goal of RL / Expected return
J(mg) = [, P(r|0)R(r)

Trajectory probability P(7160) = po(so)ITi—oP(st+1|5¢, ar)mo(as|se)
T

Trajectory reward R(r) = R(si,a)
t=0

m;_i,XJ(ﬂ'e) <—— Maximizing return

Opr1 =01 + V(;J(W@)bk <«+—— Gradient ascent



Policy Gradient

Recall Goal of RL — Fxpectedlong-term reward
J(mo) = [, P(rI0)R(7)

Trajectory probability P(7160) = po(so)ITi—oP(st+1|5¢, ar)mo(as|se)
T

Trajectory reward R(r) = R(si,a)
t=0

max J(mg) <«—— Maximizing long-term reward

Op1 =0, +« VgJ(ﬂ9)|9k <«+—— How do we compute this
gradient?



Policy Gradient

Deriving policy gradient: VyJ(mg)

Expectation over all trajectories sampled from
Vo J(mg) = VGTEW [R(7)] current policy.

= Vy / P(T|9)R(T) <«+——  Exchange gradient and integration.
T

= [/ VHP(TIH)}?#”') Gradient of trajectory probability.
JT

_ / P(79)Vylog P(7/0)R()
_ E [Vgl()gP(TW)R(T)]

Z Vo logmg(ai|s) R(T)

t=0




Policy Gradient

How do we compute gradient of traj probability?

Vo (mg) = V(;TEW [R(7)]
=V [ P(r|0)R(7)
| |

- [[ VoP(710) k(r)

_ / P(r(6)Vylog P(|6) R(r)

T

= E [Vylog P(r|0)R(r)]

T

-
Z Vo log mg(ar|s) R(T)

t=0

2. VyJ(mg) = E
T~

Step 1. Log probability of trajectory

T
g P(r16) = og n(se) + 3 (108 P(sials, ) + logma(als) ).

t=0



Policy Gradient Step 1. Log probability of trajectory

How do we compute gradient of traj probability? &
P J P y log P(7]0) = log po(so) + Z (log P(st11lst, ar) + 10gﬂe(at|5t)>-

t=0

VoJ(mg) = Vo E|[R(7)]

T~

_ W/P(ﬂe)R(r) Step 2. Grad of log prob of traj

LTy r
- [/ VoP(rlo)R(r)  VolosPrlo) = Celogmtsi+ (W + Vylog m(at|st>)
B / P(7|6)Vjlog P(rt =;Velogﬂe(atlsf>-

T~

=k [Vglog P(7|60)R(T)]
Transition probabilities does not affect

’
> " Vylogm(ars;) R(T) gradient.

t=0

2. VyJ(mg) = E
T~




Policy Gradient Step 1. Log probability of trajectory

How do we compute gradient of traj probability? r
J P y log P(7]0) = log po(so) + Z (log P(st11lst, ar) + 10gﬂe(at|5t)>-

t=0

VoJ(mg) = Vo E|[R(7)]

T~

_ W/P(ﬂe)R(r) Step 2. Grad of log prob of traj
R | r
= ([ VoP(r16)R(7) Vi log P(7]6) = Valogpntsi] + 3 (Z,l,gl’%frrﬂ’”/) + V4 log ,7,,<a,t|s,>>
JT . t=0
= /P(T|9)Vg log P(7|0)R(7) = Vylogm(as:).

— Tm} [Vglog P(7|0)R(T)]

T~

T Step 3. The Log-Derivative Trick
> " Vglogmy(as|sy) R(7)

t=0

V(;J(ﬂ'()) = 7«1?%9 Using V.log f(z) =1/f(z)V.f(z) we have:

VoP(7|0) = P(7]|0)Vylog P(7|0).



Policy Gradient

How do we compute gradient of traj probability?

Vol (mg) = Vo E [R(7)]

T~

v, / P(r|0)R(r)

VgJ(/Tg)

= [/ VoP(7]0) (7)<

JT

[P(TlH)V{) log P(7|0)R(T)

T

E
T~

E H [Vglog P(7]0)R(7)]

,
Z Vo logmg(as|s:) R(T)

t=0

Plug in this gradient

VoP(r]6) = P(r]6)V,log P(r]6).



Policy Gradient

How do we compute gradient of traj log probability?

Vol (mg) = Vo E [R(7)]

T~
= Vy / P(r|0)R(T) Recall gradient of log prob of traj is
T

= /VQP(TIH)R(T) Voylog P(7]0) = Vglogp(sy) + Z (/V/o/l(;g,ﬁen:ﬂi/ﬁﬁﬁ- Vo log 7r(;(a.,,|s,))

T t=0

T

— /P(T|9)Vg log P(TlQ)R(T) = ZV(; log mp(alsy).

T t=0
= E [Vg log P(T'@}W/

T~Tg

.
Z Vo logmg(ai|s) R(T)

t=0

2. VyJ(mg) = E

T~




Policy Gradient

Let’s think a bit what did we do here:

Vol (mg) = Vo E [R(7)]

T~

VgJ(/Tg)

v, / P(7]0)R(r)
/' VP (|0)R(r)

/P(T|9)V() log B
E [Vy

T~

E

T~

|

T

)3

t=0"

Vylog 779(0,,|3t})R(T)

We change it from trajectory probability to action
probability.

P(7]0) = po(so)II{_oP(st+1]8¢, at)ma(as|st)

Notice that this is hard to compute since we don’t
have access to the transition probability.



Policy Gradient

Let’s think a bit what did we do here:

Vol (mg) = Vo E [R(7)]

T~

v, / P(7]0)R(r)
Z/VQP(TIH)R(T)

We take expectation over trajectories sampled
from current policy. This means we can estimate it
using sample mean:

1 T
= 17 Vglogmg(a|s) R(T),
:/P(T|9)V01 6 P(7|0)R(7) g |D‘§>; o log mo(ad|s:) R(T)
= E [Vy)az P(r|0)R(7)] D={r}ti1 .~
T
o Vg (mg) = S_‘ Vo log mg(as|sy) R(T) D is the set of trajectories sampled
TG —

-0 during training, from g



Policy Gradient
Intuition:

Ori1 =0 + « VgJ(’iTo)bk

T
Vo d(mg) = TEZM ZV() log mp(ar|st) R(T)
t=0

- Maximum likelihood, weighted by the trajectory reward.

- Increasing the action probability, if this action leads to high trajectory
reward.

- Decreasing the action probability, if this action leads to low trajectory
reward.

- Reinforce the good behavior



Policy Gradient

Comparing to Supervised learning:

9;{.'4_1 e 9k + « V(?J(T‘-O)bk

Data is dynamic
T

PG: Vo (= V()lOgﬂ'g(atle,liR(T) Weighted by

,=o . Trajectory reward.

SL:
VoJ(mg) = at,s:~(Y,X [V log mg(at|st)]
Data is static or sampled from static distribution.




Policy Gradient

The problem of PG:

O i1 = Ok + a Vo (1),

VQ.](TTQ) = E
T~

t=0

Gradient has high variance.

T = Tl
Y Volog mg(ar|s) R(7) l

as
R(11) =10 R(75) = —1 R(13) = 100



Policy gradients variants, and Actor Critic

ZVglog'rg af|{ :]

- Different version of weights to replace R(r) leads to different policy
gradients methods:

T
Option 1. R(r) =Y R(si,a) Total reward of trajectory.

T . .
Option 2. Rur = R(sv,av) Reward starting from time t.

t'=t

T
Option 3. Riur =) R(sv,av) — b(sy) Baseline version of previous
s version to further reduce variance.



Policy gradients variants, and Actor Critic

ZVg log g( af|{ :]

- Different version of weights to replace R(r) leads to different policy
gradients methods:

V()J ’/Tg

Option 4. Q™ (s¢, az) State-action value function
Option 5. AT (St, at) = " (St, at) — Yo (St) Advantage function

Option 6. R(st,a:) + V™ (s441) — V™ (s4) Temporal Difference Residue



Policy gradients variants, and Actor Critic

ZVg log g( af|{ :]

- Different version of weights to replace R(r) leads to different policy
gradients methods:

V()J 7'1'9

Option 4. Q™ (s¢, ar)

Option 5. ATe (St, at) = " (St, at) — e (St) <«——— Actor critic algorithms

Option 6. R(St, at) -+ ’)/Vﬂe (St+1) — Ve (St)



Policy Gradient & Actor Critic Algorithm implementation

Algorithm 1 Vanilla Policy Gradient Algorithm
1: Input: initial policy parameters 6y, initial value function parameters ¢
2: for k=0,1,2,... do
3:  Collect set of trajectories Dy, = {7;} by running policy 7 = 7(6) in the environment.
i :
5

Compute rewards-to-go R,.

Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function Vj, .

Estimate policy gradient as

Z Z Vo log mp(as|st)|,, A
TEDk t=0

7. Compute policy update, either using standard gradient ascent,
Ok1 = Ok + i,

or via another gradient ascent algorithm like Adam.
8 Fit value function by regression on mean-squared error:

|DATZZ<‘ ) )

TEDy, t=0

Ory1 = arg mln

typically via some gradient descent algorithm.
9: end for

CF:OpenAl Spinning U


https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-concepts-and-terminology

Policy Gradient & Actor Critic Algorithm implementation

Algorithm 1 Vanilla Policy Gradient Algorithm

1: Input: initial policy parameters 6y, initial value function parameters ¢,

2: for k=0,1,2,... do

3. Collect set of trajectories Dy, = {7;} by running policy 7, = 7(6) in the environment.

4:  Compute rewards-to-go ]A?,

5. Compute advantage estimates, A, (using any method of advantage estimation)] based
on the current value function V, .

6:  Estimate policy gradient as

Policy improvement — = |Dk| > Zveloo mo(ails1)lo, Ar-

TED), t=0

Option 1-6

7 Compute policy update, either using standard gradient ascent,
Ort1 = O + gy,

or via another gradient ascent algorithm like Adam.
8 Fit value function by regression on mean-squared error:

|DA|TZZ(‘ ) ) ’

TEDy, t=0

Ory1 = arg mln

typically via some gradient descent algorithm.
9: end for

CF:OpenAl Spinning U


https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-concepts-and-terminology

Policy Gradient & Actor Critic Algorithm implementation

Algorithm 1 Vanilla Policy Gradient Algorithm

1: Input: initial policy parameters 6y, initial value function parameters ¢,
2: for k=0,1,2,... do

3:

Lo

Policy improvement

Collect set of trajectories Dy, = {7;} by running policy 7 = 7(6x) in the environment.
Compute rewards-to-go }A?,
Compute advantage estimates, A, [(using any method of advantage estimation)| based
on the current value function Vj, .
Estimate policy gradient as

gk |Dk‘ Z Z Vg 100 o af|.5f)|0 At

TED), t=0

Option 1-6

7 Compute policy update, either using standard gradient ascent,
Ok1 = Ok + i,
or via another gradient ascent algorithm like Adam. On policy value function, this
8 Fit value function by regression on mean-squared error: requires using data sampled
only from policy g
Policy evaluation T gr1 = argImin o : |
Y 2= This means samples are used
for training once then throw
typically via some gradient descent algorithm. away.
9: end for

CF:OpenAl Spinning U


https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-concepts-and-terminology

Policy Gradient & Actor Critic Algorithm implementation

Algorithm 1 Vanilla Policy Gradient Algorithm

1: Input: initial policy parameters 6y, initial value function parameters ¢,
2: for k=0,1,2,... do

3: Collect set of trajectories Dy = {7;} by running policy 7, = 7(6x) in the environment.
4:  Compute rewards-to-go Ry. .
5. Compute advantage estimates, A, |(using any method of advantage estimation )| based
on the current value function Vj, .
6:  Estimate policy gradient as
In fact, there is a minor issue in this
implementation. Could you figure out 9 = ZD 2; Volog mo(afs:)g, Ar
. TE e 1
where it is? Option 1-6
F——Compute-policyupdate;-either using standard gradient ascent,
Ok1 = Ok + i,
or via another gradient ascent algorithm like Adam. On policy value function, this
8 Fit value function by regression on mean-squared error: requires using data sampled
only from policy g
Il
Ory1 = arg mln
T IDWT xS This means samples are used
for training once then throw
typically via some gradient descent algorithm. away.
9: end for

CF:OpenAl Spinning U


https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-concepts-and-terminology

We-shoutd do log A
1 = o > 3 Wobslalsll, &

2. A
- 7\ Or+1 = O + g,
—(step6,7)

Policy Gradient & Actor Critic Algorithm implementation

Algorithm 1 Vanilla Policy Gradient Algorithm

1: Input: initial policy parameters 6y, initial value function parameters ¢,

2: for k=0,1,2,... do

3:  Collect set of trajectories Dy = {7;} by running policy 7, = m(6}) in the environment.
Comput.e rewa,rds—to—go }A?,
Compute advantage estimates, A, [(using any method of advantage estimation)| based
on the current value function Vj, .
6:  Estimate policy gradient as

Lo

TED), t=0

policy evaluation

Option 1-6
(Step 4a 8, 5)7: Compute policy update, either using standard gradient ascent, P
policy improvement.

On policy value function, this
requires using data sampled
only from policy g

or via another gradient ascent algorithm like Adam.
8 Fit value function by regression on mean-squared error:

Ory1 = arg mln

1
|Dx|T This means samples are used

for training once then throw
typically via some gradient descent algorithm. away.
9: end for

CF:OpenAl Spinning U


https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-concepts-and-terminology

RL Algorithms (What we will cover?)

e Exact methods
o Value Iteration & Policy iteration

e Deep RL algorithms [Model-free, Online approach]

o Policy gradient.
o Actor acritic.

o Proximal Policy Optimization




From Policy Gradient to PPO

Recall policy gradient

Estimate advantage:  A™(s,a:) = Q™ (s, a:) — V™(s:)
Gradient update:

i
VoJ(m6) = Erm,[>_ Vologmg(ar|s) A™ (¢, ar)]
t=0

- All the samples are from current policy g

- This means, once we do one step gradient ascent, we cannot use our
previously collected data.

- What if we want to use old data more efficiently?



From Policy Gradient to PPO

Let’s look at our RL formulation again

J(me) = [, P(710)R(T)

How do we leverage the data collected by previous policies to improve current
policy?

- Can we establish relation between different policies?

J (9) — J(901d) — ETNpe(,,.) [Z ’ytAﬂ-eold (st,at)]
t

UCB DRL course lecture 9 or Schulman, John, et al. "Trust region policy optimization." International conference on machine learning. PMLR, 2015.



https://rail.eecs.berkeley.edu/deeprlcourse/deeprlcourse/static/slides/lec-9.pdf

From Policy Gradient to PPO

J(0) — J(Ooid ) = Erropy(r) [Z vt AT (s, at)]
t

- Maximizing RL objectives is equal to maximizing
Advantage of old policy, under the expectation of new policy 7rg

ETNpg(T) [Z '7tA7r9 d St at)] ZEStho(St) a;~mo (ags:) [fytAweold (St,at)]]



From Policy Gradient to PPO

J(0) — J(Ooid ) = Erropy(r) Z v A0 (s4,ay)
t

- Maximizing RL objectives is equal to maximizing
- Advantage of old policy, under the expectation of new policy g

E"'NPG (m) [Z 7tA7r9°ld St at)] Z Est ~Dg (st) at ~mg(at|st) [fytAﬂe"ld (Sta at)]]

i o (at | St) t
= E v t E £t~ t |5t ’Y Aﬂ.oo}d (St’ at)
; st~po(st) I a %0 (B¢St) T o1a (at | St)

Importance sampling




From Policy Gradient to PPO

J(0) — J(Ooid ) = Erropy(r) Z v A0 (s4,ay)
t

- Maximizing RL objectives is equal to maximizing
- Advantage of old policy, under the expectation of new policy g

B i) [Z VAT (s, at)] ZEswpe(st) [Ea,moarlse) [Y A™0 (st5a4)]]

= TTg Q¢ | S 7
= Esrper) NPacmmoy, (asls:) (2 | &) vt A0 (St,at)”
t

TOo1a (at | St)

If the state also sampled from old policy, then we can optimize this
by sampling data from old policies, directly optimize new policy.ﬂ'@




From Policy Gradient to PPO

J(0) — J(Ooid ) = Erropy(r) Z v A0 (s4,ay)
t

- Maximizing RL objectives is equal to maximizing
- Advantage of old policy, under the expectation of new policy g

E"'NPG (m) [Z 7tA7r9°ld St at)] Z Est ~Dg (st) at ~mg(at|st) [fytAﬂe"ld (Sta at)]]

T (at | St) s
- ZEW"(S” [ Arreng 8| 8e) [WG sy A (S“at)”
old
When can we approximate 7rg ‘s state

distribution with state distribution from |~ E. _ [ | v [ mo (a¢ | st) t A0 (34, a ”
old policy? Z e Pogy (80) | Bacmon, (aclse) | 7o T, s) ! S




From Policy Gradient to PPO

- Surrogate loss

Z mo (a¢ | S¢) 4 ”
- t peold( ) [ eold ( | ) [Weold (at | St) ,Y ( t t)

- Subject to two policies are close to each other.

KL(T‘—GoldHWG) s

- How do we enforce two policies are close during the updates?



From Policy Gradient to PPO

- Let’s look at one state action pair first,

o (a | s)
001 (a | S)

AT%u (s, a)

-  We want to optimize mg to maximize above value, but at the same time, not
push too far away from old policy.



From Policy Gradient to PPO

- Let’s look at one state action pair first,

o (a | s)
001 (a | S)

AT%u (s, a)

-  We want to optimize mg to maximize above value, but at the same time, not
push too far away from old policy.
- Let’s divide this into different cases based on Advantage



From Policy Gradient to PPO

Let’s look at one state action pair first,

o (a | s)
MO0 (a | S)

A4 (S, a)

-  We want to optimize mg to maximize above value, but at the same time, not
push too far away from old policy.

- Let’s divide this into different cases based on Advantage

- IfA> 0, we want increase the probability of g for this state action pair, but
not too large



From Policy Gradient to PPO

Let’s look at one state action pair first,

ro(a|s)
AT (s, a
row @) (53

- IfA> 0, we want increase the probability of g for this state action pair, but
not too large. wilw] )

- Let’s denote ratio of two policiesas "~ 7, (a[s)

- Ifris too large

- we bound the maximal update by 1+e€

- O.w. we improve it based onr

- Let’s denote this new loss by .fcLip



From Policy Gradient to PPO

Let’s look at one state action pair first,

o (a | s)
AT (s, a
TNCID
- IfA> 0, we want increase the probability of g for this state action pair, but
not too large. wilw] )
- Let’s denote ratio of two policies as "~ 7, (a[s)
- More concretely

(14+€¢ r>1+c¢ )

P = A{ r re(l—el+e ;
J r<l-—e

\

CF:OpenAl Spinning Up ppo notes and PPO paper



https://drive.google.com/file/d/1PDzn9RPvaXjJFZkGeapMHbHGiWWW20Ey/view
https://arxiv.org/abs/1707.06347

From Policy Gradient to PPO

Let’s look at one state action pair first,

o (a | s)
AT (s, a
TNCID
- IfA> 0, we want increase the probability of g for this state action pair, but
not too large. wilw] )
- Let’s denote ratio of two policies as "~ 7, (a[s)
- More concretely

(14+€e¢ r>1+c¢ )
[ CLIP :A<[T 7"6(1—671—"61 >
J r<l-—e

We want to increase 7rg , right now it has‘low probability on (s, a). o (a | 8) < (1 + 6)71‘9 (a | 3)
, old




From Policy Gradient to PPO

Let’s look at one state action pair first,

o (a | s)
AT (s, a
TNCID
- IfA> 0, we want increase the probability of g for this state action pair, but
not too large. wilw] )
- Let’s denote ratio of two policies as "~ 7, (a[s)
- More concretely

(14+€¢ r>1+c¢ )
[ CLIP :A<[T 7"6(1—671—"61 >
J r<l-—e

We want to increase 7Ty , right now it has low probability on (s, a).




From Policy Gradient to PPO

Let’s look at one state action pair first,

o (a | s)
AT (s, a
TNCID
- IfA> 0, we want increase the probability of g for this state action pair, but
not too large. wilw] )
- Let’s denote ratio of two policies as "~ 7, (a[s)
- More concretely

(14+€e¢ r>1+c¢ )
LOUP = AL r re(l—el+e) ;
7 r<l-—e |

We can increase g by r*A



From Policy Gradient to PPO

Let’s look at one state action pair first,

o (a | s)
AT (s, a
TNCID
- IfA> 0, we want increase the probability of g for this state action pair, but
not too large. wilw] )
- Let’s denote ratio of two policies as "~ 7, (a[s)
- More concretely

'[1—|—e r>1+¢e€ ]\
P = A{ r re(l—el+e ;
J r<l-—e

We want to increase 7g , it already has high probability on (s, a). No additional benefit to make it larger.




From Policy Gradient to PPO

Let’s look at one state action pair first,

g (a | s)
AT (s, a
T 014 (a | S) ( )

- IfA> 0, we want increase the probability of g for this state action pair, but
not too large. | N _ mlal s) rcurp A>0

- Let’s denote ratio of two policies as "~ 7, (a[s)

- More concretely

(14+¢e¢ r>1+c¢
o = A r re(l—el+e ;
r r<l-—e

\
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I
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I

I

I
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I
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From Policy Gradient to PPO

- Let’s look at one state action pair first,

g (a | s)
AT (s, a
T 014 (a | S) ( )

- IfA <0, we want decrease the probability of g for this state action pair, but
not to further decrease, when it's already small.

(7 r>1+ce€ )
err = AQ r re(l—el+e ;
l—€e r<1-—c¢

\

CF:OpenAl Spinning Up ppo notes and PPO paper
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From Policy Gradient to PPO

Let’s look at one state action pair first,

m(a | s)
0014 (a | 3)

g (a | s)
AT s,a P =
o @) (52)

If A <0, we want decrease the probability of g for this state action pair, but
not too large, when it's already small.

( T
. CLIP :A< r

\

mo(a|s) = (1 - €)mp,,(a | 5)

r>1+4e€ )
re(l—el+e) ;
l—€e r<1-—c¢ )

In this case, g has higher probability on (s, a), than g,
We can then take big update to make it smaller.




From Policy Gradient to PPO

- Let’s look at one state action pair first,
m(a | s)

T6014 (a | 3)

g (a | s)
AT s,a P =
o @) (52)

- IfA <0, we want decrease the probability of g for this state action pair, but
not too large, when it's already small.

(7 r>1+ce€ )
err = AQ r re(l—el+e ;
l—e r<1—¢

\ .

o (a | S) < (1 — e)'mgold(a | s) In this case, g already has a smaller probability than 7,
No additional benefit to update 71y

CF:OpenAl Spinning Up ppo notes and PPO paper
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From Policy Gradient to PPO

- Let’s look at one state action pair first,
m(a | s)

T6014 (a | 3)

o (a | s)
AT (s, a r=
T 014 (a | S) ( )

- IfA <0, we want decrease the probability of g for this state action pair, but
not too large, when it's already small. {—&1

/A

T r>1+ce€
e = A r re(l—el+e ;
l—€e r<1-—c¢€
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Proximal Policy Optimization

- Let’s look at one state action pair first,
m(a | s)

T6014 (a | S)

T (a | s)
AT s,a P =
LAY (a | S) ( )

- Let's combine the two cases: [ CLIP — min(r A, g(e, A))

(I+e)A A>0
9<€’A):{ (1—€)A A<O.

- Or equivalently

LCYE — min(rA, clip(r,1 — €,1 + €) A)

CF:OpenAl Spinning Up ppo notes and PPO paper
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Proximal Policy Optimization

- Let’s look at one state action pair first,
m(a | s)

T 0014 (a’ | 8)

o (a | s)
TG0 (a | S)

AT (s’ a) =

- Let's combine the two cases: [ CLIP — min(r A, g(e, A))

[ (1+eA A>0
9(6”4)—{(1—6)/1 A < 0.

if a given state-action pair has negative advantage A, the optimization wants to make mg(a | s)
smaller, but no additional benefit to the objective function is gained by making 7g_,,(a | s) smaller
than (1 - e)ﬂ—eold(a’ | S)

- Recap intuition:

if a given state-action pair has positive advantage A, the optimization wants to make mg(a | s)
larger, but no additional benefit to the objective function is gained by making 7g(a | s) larger than
(1 + E)Treom(a’ | 8)

CF:OpenAl Spinning Up ppo notes and PPO paper
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Proximal Policy Optimization

Algorithm 1 PPO-Clip

1: Input: initial policy parameters 6y, initial value function parameters ¢q
2 fork=0.12, ...doe

3:

e

Ut

Collect set of trajectories Dy = {7;} by running policy m = 7(6}) in the environment.
Compute rewards-to-go R;. )
Compute advantage estimates, A; (wsingany methodof-advantage-estimation) based

on the current value function Vj, . In PPO, we use GAE [1]
Update the policy by maximizing the PPO-Clip objective:

e at|5t)
AWG' : : Aﬂ'g/ :
|Dk| Zme(m o A a0, gl k<st,at>>),

TED t=0

Op11 = arg Max i

typically via stochastic gradient ascent with Adam.
Fit value function by regression on mean-squared error:

BT 2 > (Ve - )’

€Dy, t=0

Or4+1 = arg mm

typically via some gradient descent algorithm.

8: end for CF:OpenAl Spinning Up
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Part Il: How to solve RL?
RL Algorithms Landscape



RL Algorithm Landscape (from the scale of problem)

{ RL algorithms J

Exact methods }\ Approximation |
(Tabular) (Deep RL)

\

Policy iteration Value iteration . '\
Deep Q-learning
State-value Proximal policy
iteration optimization

Tabular Q-learning M ’




RL Algorithm Landscape (from the scale of problem)

. 1. alasrith large-scale,
Small-scale, finite state and algeritams infinite/continuous state and

action space ’/__/\ action space.
\ Exact methods Approximation /
(Tabular) (Deep RL)

‘ Policy iteration

Value iteration

Deep Q-learning |

State-value Proximal policy
iteration optimization

Tabular Q-learning ’




RL Algorithm Landscape (whether interacting with env)

Online interaction with the
environment, collecting new
data sampled from the
training policy.

Learning on static offline

dataset. Don’t collect new
/ data.

’ RL algorithms

Online Offline

5 I ] | Batch-Constrained
eep Q-learning " Q-learning (BCQ)

Proximal policy ,| Hybrid Q l._ Conservative Q
optimization . learning i Learning

Soft-Actor Critic

Extreme Q learning ’

Leveraging both
online and offline ’

data.




RL Algorithm Landscape (whether interacting with env)

When the interaction is not (RL"'QW iEhm Interaction with env is costly.
critical [game, LLMSs]. / [robotics]
S Online Offline

R

Batch-Constrained
Q-learning (BCQ)

Deep Q-learning

Proximal policy ,| Hybrid Q },_ Conservative Q
optimization . learning i Learning

b

Soft-Actor Critic

Extreme Q learning J

Leveraging both 1| [~
online and offline

data.




RL Algorithm Landscape (Do we have world model?)

RL Algorithms
Model-Free RL Model-Based RL
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient <—— ( ~~‘ —>‘ DQN ‘ > World Models |—> AlphaZero
—— — DDPG N - — S —
A2C/A3C «— ‘ > cs51 ‘ > 12A

. ’ —>‘ TD3 ‘4— : - ) -

PPO «] — ——>  QR-DQN ‘ >  MBMF

’ e SAC ‘4— ; ’ :
TRPO <« " —> HER \ >  MBVE
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RL Algorithm Landscape (Do we have world model?)

We do not construct world model. (we
don’t learn transition probability P(s’|s,
a), reward r(s,a)

 ’ Model-Free RL

RL Algorithms

!

r

(_)

Policy Optimization
G =i
Policy Gradient <—— ———————————
e _JL DDPG
A2C/ A3C <— T
D — —ﬂ TD3

PPO «]

t———— —+ SAC
) ~

TRPO

\

Q-Learning

A

A

A

\

=

We construct world model. (we model
learn transition probability P(s’[s, a),

reward r(s,a).

Model-Based RL /

r

Learn the Model

Y

World Models

Y

I2A

Given the Model

\—{ AlphaZero

~

)

~

______ J

Y

Y

MBMF

MBVE
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RL Algorithm Landscape (Do we have world model?)

Less sample efficient, but more RL Algorithms Sample efficient, but computationally
computing efficient i expensive.

{ 3

 ’ Model-Free RL Model-Based RL /

— =

{ R} 1 ‘ 3

Policy Optimization Q-Learning Learn the Model Given the Model

G a0} s (- 2\ G 2
Policy Gradient <—— (7 World Models \—% AlphaZero

—>  DQN >
s L e _—
AC/ASC [« —)‘L cs51 > A
) b 3 e ——
PPO «] e —ﬁ QR-DQN > MBMF
P—— e BT J<— —
TRPO <« N > MBVE
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RL Algorithm Landscape (Do we have world model?)

RL Algorithms

On-policy algorithms !

{ R}

Model-Free RL Model-Based RL

r—i e

Off-policy algorithms

Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient <—— (' ) —>} DQN > World Models \—% AlphaZero |
kt \/ ) l DDPG ‘ ( \j J & J A J
A2C / A3C <«— | ' —>} c51 > I2A
- i )‘ TD3 ‘ < \'
PPO — > QR-DON >  MBMF
—J‘ SAC ‘4— >
TRPO ~ «— \ / —>  HER >  MBVE
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RL Algorithms (Key algorithms)

RL Algorithms

|

r

Model-Free RL

(+)

Policy Optimization Q-Learning
) ]
‘Policy Gradient < J | DQN
| DDPG <
A2C / A3C [« > C51
— TD3 <
ﬂ PO < } > QR-DQN
H SAC <
TRPO < HER

Model-Based RL

Learn the Model ‘

Y

World Models M AlphaZero

Y

I2A

Y

MBMF

Y

e

MBVE

‘ Given the Model
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Part |l: Application

RLHF in ChatGPT
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LLM Training Stages

[1] GPT3 paper.Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33
(2020): 1877-1901.
[2] Zhou, Chunting, et al. "Lima: Less is more for alignment." Advances in Neural Information Processing Systems 36 (2024).
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LLM Training Stages




Step1

RLHF Workflow

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

Explain the moon
landing to a 6 year old

|
Y

)

Vi

Some people went
to the moon...

\/
This data is used SET
to fine-tune GPT-3 2o
. . ./)?.s\\.
with supervised \}52{/
learning. 2
EEE

Supervised fine-tuning

Reinforcement Learning from Human Feedback

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This datais used
to train our
reward model.

Moon is natural

Collect comparison data,
and train a reward model.

Explain the moon
landing to a 6 year old

0 o

Explain gravity, Explain war.

] )

People went to
satellite of... the moon.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

F: Ouyang et al., 2022
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Why SFT alone is not sufficient?

- From the perspective of cost

Collecting SFT demonstration data is expensive. We need very high
quality data samples.

- From the goal of alignment

Human preference is implicit and complicated. Training on SFT data is
not maximizing human preference.

CF: cs288
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Reward model as a Human preference proxy

- Each prompts, we have K response to rank. It produces (Iz‘) comparisons.

loss (0) = —(%E(x,yw,yl)mp log (o (r6 (z, Yw) — o (T, u1)))]

PROMPT  Explain the moon landing to a 6 year old in a few sentences.

Prompt x
COMPLETION  GPT-3
Explain the theory of gravity to a 6 year old.
Explain the theory of relativity to a 6 year old in a few sentences.
ReJeCted response y_I Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT
People went to the moon, and they took pictures of what they saw, and

Preferred responsey w sent them back to the earth so we could all see them.
GPT3 paper



https://arxiv.org/pdf/2005.14165.pdf

Reward model as a Human preference proxy

%) comparisons.

- Each prompts, we have K response to rank. It produces (2

loss (0) = —%E(x,yw,yl)mp log (o (r6 (z, Yw) — o (T, u1)))]

(2)

1
Logistic function: o(r(yw) — (Y1) = 14+ erwi)—r(yw)

Optimize reward so that preferred response has higher
score than less preferred response.




PPO for LLM

Objective function

PPO clipped loss KL regularization

objective (¢) =E(x,y)~D,,gL 70 (z,y) — Blog (W?L(y | z) /75 (y | 37))] +
Y E g~ Dyrerain [10g(7f§ - (37))]

Pretraining loss to alleviate
the alignment tax




PPO for Large Language Model

Objective function

objective (¢) =E(x,y)NDW§L [7‘9 (z,y) — Blog (W?L(y | x)/WSFT(y | 33))] +

’YExNDpretmjn [log(”r(}l}L (:L.) )]

What is state, action, defined here?

What is the environment?




Win rate Pre-trained vs SFT vs RL

GPT distribution I Instruct distribution
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Limitation & Challenges

Collecting preference data is expensive.
- This step is hard to avoid as this is supervision of human preference. But,
- How do we best select our data for collecting human feedback.
- To what extent we can rely on Al feedback?
- RL optimization is hard.
- Reward score not increasing, Performance collapse, Over optimization of reward.
- Reward hacking.
- It can prefer long response instead of actually high quality response.
- Multi-objectives
- Multiple preferences might conflicting with each other.
- lterative process
- When do we start the next iteration.
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