CS/7150 Deep Learning

Jiaji Huang
https://jiaji-huang.github.io
04/06/2024

Trend: Model Size Grows Fast

I Parameters of milestone Machine Learning systems over time
le+13 (OIFe o noee
l : omain
| OOO l;Vision
le+12 I 8 @ — le+1 %(Laaar;ggsage
(0] Q%QOO i O Drawing
le+1l | o o s 5 3 =To Other
I o 50 o Rmehc
ﬂleﬂo = e I o & O:f’% 5@0 . | | | B&"
'8 le+9 | OO%Sog%O o a : O o o n = % ﬁmr&gj:\]
@ ° > g2 - th o m,, WOE
£ — OO| &g%go@?o g o 0O QE(}%%}
B rers °© 0 o %oy o SRS o © al 9 o o 2 2 B,
g O . ? 154 O Jg"%l oOO%)O g L 7 T bl {}g{b %Oﬁwﬁ @ﬁd}t‘]om DGIG
e oo 00 q o ‘ oo @ © -
O oo~ Ooo 00 4.8 g ° '] ¥ om o @ @ @ : ° ¢ o
le+6| 2 60279 :3 L ol P & | - o @ o' % IR o
le+5/0O °p | ° -
(@) I g
le+4 (¢%) (]
06 2008 2010 2012 2014 2016 20I18 2020 2022 20 : : ‘ : 20l . 0l
Publication date Publication date
After 2018, parameter counts grow by 4 Parameter Gap: Starting in 2020, we see many models below
4
orders of magnitude, mainly due to 20B parameters and above 70B parameters, but very few in
’

EpochAl trends

https://epochai.org/blog/machine-learning-model-sizes-and-the-parameter-gap

Trend: SSSS to Train

Estimated training compute cost in USD: using price-performance trend

mmmm 90% Cl in regression mean

$1M

$100K

$10K

$1K

$100

$10

$1

$0.10

Training cost in USD (log scale, inflation-adjusted)

$0.01

$0.001

S P @ P P

EpochAl trends

S

Publication date of ML system

S P

Regression mean (0.51 OOMs/year) ® Data

S P

CC BY Epoch

Cost consists of
 Hardware
Electricity
Salaries

Gemini Ultra projected to be $630
million to train (most expensive)

https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems

How about Inference cost?

* Single inference cost "‘\/training

* But over the entire lifetime of a model?

PaLM
* Up to 90% of total Al cost I (el
S 10”7 @ GpT2
= | @ BERT S
§ @ Seq2Seq
E 1011-
£]
o
[@)]
% 1010 5
©]
S o
S oo
g 1077 o ®)
3]
g.]
EpochAl trends and Desislavov et. al, 2023 8 1o
1616 IOIlS 10IZO 1622 10IZ4

Compute cost of training (FLOP)

https://epochai.org/blog/trading-off-compute-in-training-and-inference
https://www.sciencedirect.com/science/article/pii/S2210537923000124

Other Issues with Inference

* Choose edge computing due to latency and security
* But also less memory and computational power

Edge Computing Cloud Computing

Image Uploaded Control Commands c
to Cloud Returned Action

Action Image Oata In Image data processed

Image Data In Image data processed

Cartoon from TowardsDataScience

https://towardsdatascience.com/deep-learning-on-the-edge-9181693f466c

Agenda

* Knowledge Distillation
 Sparsity and Unstructured Pruning
* Structured Pruning

* One-shot Pruning

Knowledge Distillation (KD)

* Ask logits of small model = logits of big model

* Terminologies:
* Big model: teacher
* Small model: student

* Treat p(y|x) as “soft” label:
min KL(pllge) = Lce(p,q0) — H(p)

Hinton et. al, 2015

> loss (€

backpropagation

e

> ke

Student

https://arxiv.org/pdf/1503.02531.pdf

Example: Image Classification

* Treat p as soft labels (Teacher

e Also use hard label
(ground-truth)

e So overall loss is

Mcee(,q9) + (1 =Dy, qe) |
O < A < 1 | | convad (Student

Example from pyTorch tutorial

https://pytorch.org/tutorials/beginner/knowledge_distillation_tutorial.html

fication

teacher.eval() # Teacher set to evaluation mode

° Tea C h e r i n eva | m Od e student.train() # Student to train mode
for epoch in range(epochs):
e Student in training mode o et abels in train_toader:

inputs, labels = inputs.to(device), labels.to(device)

¢ may I ntrOd uce a tem peratu re optimizer.zero_grad()
pa ra m ete r T > O e the tzéalc—'zz’fidwzjzztvsvith the teacher model - do not save gradients here as we do not

with torch.no_grad():

* Smaller T: more deterministic forcer logits - toxcnerCime

Forward pass with the student model

® T — O E arg maX student_logits = student(inputs)

") #Soften the student logits by applying softmax firs log() second
L]

) O t | I d d h d I soft_targets = nn.functional.softmax(teacher_logits |/ T, |dim=-1)

p IO n a y a a r OSS soft_prob = nn.functional.log_softmax(student_logits / T| dim=-1)

Calculate the soft targets loss. Scaled by T##*2 as suggested by the authors of
the paper "Distilling the knowledge in a neural network"

soft_targets_loss = torch.sum(soft_targets * (soft_targets.log() - soft_prob)) /
soft_prob.size()[0] * (T**2)

Example: Image Class

Calculate the true label loss
label_loss = ce_loss(student_logits, labels)

Weighted sum of the two losses
loss = soft_target_loss_weight * soft_targets_loss + ce_loss_weight * label_loss

loss.backward()

Example from pyTorch tutorial G0

https://pytorch.org/tutorials/beginner/knowledge_distillation_tutorial.html

Discussion

* Benefit of soft labels by teacher? Variance reduction (Zhou et.al, 2021)

* Train student on the same data as teacher?
 Shallower or narrower student?

* How to decide student’s architecture? (Layer similarity index?)

1x Depth (94.1%)

2x Depth (95.0%)

4x Depth (93.2%) 8x Depth (91.9%)

1.0
60 0.9
50 0.8
07 >
40 06 5
30 05 F
20 0.4 o
0.3
10 0.2
0.1

5 10 15 20 25 30 10 20 30 40 50 60

1.0 1.0
0.8 08
0.6 06

5 10 15 20 25 30 10 20 30 40 50 60
Layer Layer

Layer
“NWPHrOOTON©O

123456789

Y
=

ra
=
foe

3
goep”

1234567829
Layer

https://arxiv.org/pdf/2102.00650.pdf

Teacher-Student Gap

e Stronger teacher doesn’t necessarily benefit student

* Teacher label becomes “harder”, not much additional information
than ground- truth label

* Too complicated decision boundary for student to mimic

> > > 60 >
. N 0
574 905 544 555
&) (&) |9 (&)
(&) &) |9 O
© © © 50 ©
5. 805 242 =
() o o= () 45.:
© O < | (@]
2 - g
MRNETS g g g g, NS SRS o ey g SR
teacher size teacher size
a) CIFAR-10 b) CIFAR-100

Figure 2: Distillation performance with increasing teacher
Mirzadeh et. al. 2020 size. The number of convolutional layers in student is 2.

https://ojs.aaai.org/index.php/AAAI/article/view/5963

Teacher-Student Gap

* Given the teacher, there is a “best” choice of student architecture

P 4
X X
£ 3] e N £ 3] P e
= V4 S V4 \
@) (&)
o o
(o] ©
0 8 6 4 2 0 8 6 4 2
student size student size
a) CIFAR-10 b) CIFAR-100

Figure 3: Percentage of distilled student performance in-
crease over the performance when it learns from scratch with
varying student size. The teacher has 10 layers.

Mirzadeh et. al, 2020

file:///%5C%5CUsers%5Cjiajihug%5CDownloads%5C5963-Article%2520Text-9188-1-10-20200513.pdf

Teaching Assistant

 When the teacher-student gap is too big

[BEF W e Table 2: Student’s accuracy given varied TA sizes for (S=2,
y T=10)
' - Model Dataset TA=8 TA=6 TA=4
[ccP ¢ e Logits
y % Wstuden ony CIFAR-10 7275 7315 7351
| BN BN . B CIFAR-100 4428 44.57 4492
/ *S\
/ | & v’ Teacher
""o”i\&g Assistant
l «® Table 3: Student’s accuracy given varied TA sizes for (S=8,
: Teacher T=].].0)
SR Model ~ Dataset TA=56 TA=32 TA=20 TA=14
: ResNet CIFAR-10 88.70 88.73 8390 83.98
Figure 1: TA fills the gap between student & teacher CIFAR-100 6147 6155 6182 615

Mirzadeh et. al, 2020

file:///%5C%5CUsers%5Cjiajihug%5CDownloads%5C5963-Article%2520Text-9188-1-10-20200513.pdf

Other Distillation Criteria

* Optionally ask intermediate
features to be close s

* May introduce a projector if
feature dimensions differ el

minll W/, — £ ()]

IIIII

KD for Pretrained LMs: Distilbert

_/

O_ =q3
it

e Student architecture
 half as deep as teacher

* |nitialized from every other layer
of teacher

* Keep same hidden dimensions

* Training loss
Lce(p, q9) — a cos(hy, hy)
* Training data:

Same pretraining material as BERT

Sanh, et. al, 2020

[mask] [mask]

https://arxiv.org/pdf/1910.01108.pdf

KD for Pretrained LMs: Distilbert

* Evaluation 1: Retains accuracy

Table 1: DistilBERT retains 97% of BERT performance. Comparison on the dev sets of the

GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the
medians of 5 runs with different seeds.

Model Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

ELMo 68.7 44.1 68.6 76.6 71.1 862 534 915 70.4 56.3
BERT-base 79.5 56.3 86.7 88.6 91.8 896 693 927 89.0 333
DistilBERT 77.0 51.3 82.2 87.5 89.2 885 599 913 86.9 56.3

. . Table 3: DistilBERT is significantly smaller
¢ Eva I u at|0 N 2 . fa Ste I while being constantly faster. Inference

time of a full pass of GLUE task STS-B (sen-

timent analysis) on CPU with a batch size of
L.

Model # param. Inf. time
(Millions) (seconds)
ELMo 180 895
Sanh, et. al, 2020 BERT-base 110 668

DistilBERT 66 410

https://arxiv.org/pdf/1910.01108.pdf

A few Variants

e Patient KD (Sun, et. al, 2019): Some variations on training loss
* Cos loss for intermediate hidden features
* Downstream task-specific training loss

e Tiny BERT (Jiao, et. al, 2020): task specific distillation

General Task-specific
DIStlllathl’l | General | DiStlHathl’l Fine-tuned
l TinyBERT I TinyBERT

Data Augmentation
Task Dataset Augmented
Task Dataset

Figure 1: The illustration of TinyBERT learning.

e DistilGPT-2: Same as distilbert but for decoder model

https://arxiv.org/pdf/1908.09355.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://huggingface.co/distilbert/distilgpt2

KD for LLM
e LLM’s training data is proprietary

: : - Learning
[% SklII/DomamJ [Sl e J

a N :""_éféér-l _________ .1 train [|
: < : :

idrive Generated i

Seed : Knlowled'ge :

| Knowledge '} ! richertim ¢ i

Knowledge Elicitation Distillation Algorithm

Xu, et. al, 2024

https://arxiv.org/pdf/2402.13116.pdf

More on KD loss

* Forward KL is commonly seen

min KL(p|lqe) = £ce(p,qe) — H(p) X \

 Backward KL /

minKL(qg|lp) = ce(qo,p) —H(qo) —» - eromingiiiplia —- argmingrLiaio
- Coverage vs. preciseness Forward KL: covers all mode of p, less precise

Backward KL: mode seeking

* Choice should be task-dependent
 Machine translation, less modes, forward KL
* Dialog, more modes, backward KL

Agenda

* Knowledge Distillation
 Sparsity and Unstructured Pruning
* Structured Pruning

* One-shot Pruning

Unstructured pruning

* Force weights to be 0. Sparsity pattern is unstructured
*e.g.,y = Wx prune A to 20% sparsity but in a unstructured way

w X
e Saves storage, but not necessarily speedup

* As GPU is good at dense matrix operations

Magnitude Based Approach

* Recipe:
(=\
1. Train as usual Train Connectivity
2. Set w; to O if [w;| small =
. . Prune Connections
3. Keep the unpruned weights, and further train o
(don’t re-initialize!) Train Weights

L J/

2-3 can be repeated for multiple rounds (suggested)

* Q: why not just impose ¥, regularization at training?

Han, et. al, 2015

https://arxiv.org/pdf/1506.02626.pdf

Magnitude Based Approach

* Reduced number of parameters Significantly

Layer | Weights FLOP Act% Weights% FLOP%
convl | 35K 211IM 88% 84% 84%
conv2 | 307K 448M 52% 38% 33%
conv3 | 885K 299M 37% 35% 18%
conv4 | 663K 224M 40% 37% 14%
convd | 442K 150M 34% 37% 14%

fcl 38M SM 36% 9% 3%

fc2 1M 34M 40% 9% 3%

fc3 4M &M 100% 25% 10%
Total | 61M 1.5B 54% 11% 30%

Pruning AlexNet

Han, et. al, 2015

“Remaining Parameters “Pruned Parameters

60M

45M

30M

15M

i8_E

M

&’\
O

S & L F

N o9 5 N
LSRN O RN \6@

: reduces the number of weights by 9x and computation by 3x

https://arxiv.org/pdf/1506.02626.pdf

Magnitude Based Approach

* Accuracy-efficiency trade-off

-O-L2 regularization w/o retrain L1 regularization w/o retrain
L1 regularization w/ retrain L2 regularization w/ retrain
~®-L2 regularization w/ iterative prune and retrain

0.5%

0.0%
-0.5%
-1.0%
=1 -1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%

-4.5%
40% 50% 60% 70% 80% 90% 100%

Parametes Pruned Away

with retraining: weight
decay better than ¢4

0SS

Accuracy

K without retraining: 4
better than weight decay

Magnitude Based Approach

* Trade-off at different layers
* Top layer is more prunable

convi conv2 Trconv3 conv4d “*-conv5
0% X——E—CXBrmX S X=X 0%
=X X
X
X
-5% -5%
2] X (2]
2 2
S \}; S
>
S .10% X & .10%
5 5
8 \}* g
< X <
-15% -15%
b 4
-20% \ -20%
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

#Parameters #Parameters

Hessian Based: Optimal Brain Damage (OBD)

* Perturb network weights, w > w'. Denote d 2w —w

* Loss on all training data L(w) £ —Z _1t(w, x,)), change of loss is:
Ar2 L(W) —L(w) = (Vﬁk o) +— é‘THé‘
 VL(w) = 0 at local minimum

0°L
H;; = i is Hessian and A= —ZUH 5; 0

* Note: H is # param X # param, and requires some samples to estimate

Lecun, et. al, 1989

https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

OBD (contd.)

* Diagonalize: set H; ; = O fori + j
*So A=Y, Hy; 6f

* If we sparsify w; to 0, then §; = —w;, and A= >, H;; w

* SO0 we have an importance score for all w;’s:
04¢

ow?

2
Wi

2 —
Hiwi =

» Set w; = 0 if |H; ;w?| small

2
l

Discussion

* Magnitude based vs. Hessian based, which one is better?

* Hard to answer. Performance depends on
* Network structure
* Pruning percentage
* Sample data to estimate the Hessian

Agenda

* Knowledge Distillation
 Sparsity and Unstructured Pruning
* Structured Pruning

* One-shot Pruning

Unstructured Sparsity # Speedup

Unstructured sparsity pattern induces irregular memory access

E " / ~ e - —® 1 EIQuadro K600
i 1 - | %’ ETesla K40c
N 0.5 S LIGTX Titan
‘ l N ’ |!| 2 -O-Sparsity
o FEL 0

convl conv2 conv3 conv4 convs

AlexNet on GPU platforms and the sparsity. 95% sparsity leads to
<1.5 speedup only.

Wen, et. al, 2016

https://arxiv.org/pdf/1608.03665.pdf

Structured Sparsity for Linear Layers

* Remove a row in matrix W amounts to remove an output neuron

\\\\\'Il//n
\ /X
WA]
NN\
NV
AR \
/flf'zﬂ“‘:»"\\
NI

A A
11/ /N \
7”"“‘“

* Remove a neuron at input?

W77
/\‘:\‘;\M'/l//

 Remove a neuron in a middle layer?

Structured Sparsity for Conv layers

* Pruning a 3D-filter amounts to remove an output channel

W;

n;
hi K

X Xi+1

* Finer granularity: Pruning a 2D filter

Li, et. al, 2017, Wen, et. al, 2016

Ti+1

;42

https://openreview.net/pdf?id=rJqFGTslg
https://arxiv.org/pdf/1608.03665.pdf

Magnitude Based Approach

Recipe
1. Determine sparsity pattern:
Choice 1: Set groups with small magnitude (Zieg |lw;|) to O (Li, et. al, 2017)

Choice 2: Couple with training (Wen et. al, 2016):

* Train with original loss, plus a group lasso regularization: 2. \/Zieg w?

* Converge to sparse groups of weights

2. Fix the sparse pattern, and retrain remaining weights

3. Optionally repeat 1-2

https://openreview.net/pdf?id=rJqFGTslg
https://arxiv.org/pdf/1608.03665.pdf

Compare against Unstructured Pruning

* Notable speedup

% Sparsity % FLOP reduction

100 - . - 100 6 =
*-convl : "§ - SSL
80 - “conv2) o 80 S @
(="
“-conv3 : 4 @
60 “<conv4d 60
~*-convS 3
40 - —FLOP - 40
2
20 20
1
0 - 0 0
41.5 42.5 43 43.5 44 Quadro Tesla Titan Xeon Xeon Xeon Xeon
70 top-1 error Black T8 T4

Alexnet on ImageNet

Deeper layers are more prunable

Structured Sparsity On Transformer Block

* Recap of a transformer block

6

.

(|
(- -
Transformer (Layer Normalize)) Project down to d WO
Block %9 N
Residual Onﬁtaplej?: 2 [head1 I head2 I head3
connection [Feedforward Layer] \) 1
A
[w, wk, wY,
(Layer Normalize) Multihead
;é Attention [y wes
" A\
Residual t —_ Layer [we Wy Y, iphd2 |
connection [Self-Attention Layer { ‘t Lwol,wxl,wvl Head 1
\ A

B8 8 . &) , />

Formalize Attention Heads

* Each attention head output a vector f;(:; wY W{{, Wy)

L’
* Overall output is their linear c(g)mbination]
. K ywV
LW, W, W1)
0=Ww° :

H 'fH(°; WQJWKJ WKI)_
=) (WeAGWEWEWY) = ae (W)
i=1
Where W; = (W?, W?, wi,w}

Removal of Attention Heads

* Magnitude based Pruning?

WO+ WP+ |[WK| + WY
* Smaller weights are not necessarily less important
* Hessian based approach? But how?
* Introduce a mask variable m; for each head

H
0= z miAttl- (‘, Wl)
h=1

* Derive 2nd order gradient w.r.t. m;

Kwon et. al, 2022

https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Paper-Conference.pdf

Agenda

* Knowledge Distillation
 Sparsity and Unstructured Pruning
* Structured Pruning

* One-shot Pruning

Recap the General Pruning Recipe

1. Prune (set to 0 according to some importance score)
2. Adjust remaining weights by re-training
3. Iterate 1-2

e . N\
Conventional
_ Training

Prune Get rid off retraining?

Neurons /<'L§

Hessian based I | Retraining |
" Weight
_ Initialization |

Magnitude based } ‘ | :

One-shot Prune with Hessian

* Once we setaw; = 0, adjust w; (j # p) to:
min {AE l(S‘TH(S‘}, s.t. 0; = —w;
5 2
* Introduce Lagrange multiplier A

L(1,8) =-8"H& + A(e] 8 + w;)
*Setl'(6) =0= & = —AH le;
* Plug 6" backinto I, L(1) = —%zeiTH‘lei + Aw;
*Solve L'(1) = 0= A" = w;/[H™1];;

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf

One-shot Prune with Hessian

e §F = —AH_lei and 1™ = Wi/[H_l]i,i

Wi[H_l].,i —— i-th column of H~1

500" = - [H1];;
2
[I * p— Wl _1 . .
Correspondingly, A ST (Note HIH™*].; = e;)
* Importance score for weight w;:
w;
2|H™];;

Q: how to recover the OBD method by assuming special form of H?

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf

An Example: Layer-wise One-shot Pruning

e Prune weight of a linear layer, W to sparse W, so that
— 12
min||WX — WX|
w

— 2
* Rows are independent. So just consider min L; = (Wl-,:X — Wl-’:X)

* We can apply results before: as

. Wl-,]- = W, ; + 0j where 6; = —W; ; for some W, ; to be zero-ed
* Hessian w.rit. W; . is € = XXT" (input covariance)

2
Wi,j
—-17. .

(€715,

* Importance score for W; ;:

Frantar et. al, 2023 and sparseGPT

https://arxiv.org/pdf/2301.00774.pdf
https://arxiv.org/pdf/2301.00774.pdf

More Simplified

Wanda (Pruning by Weights and activations)
 What if we assume C diagonal?
_ _ —2
(€, = ¢ = 1X;.

* SO importance score is

). 2
i = Wi X |

1]

Magnitude Pruning Wanda

______ S =|W| 4lol1l1 S = [WI- X2
4101]|-1 |4 0|11} 410(0|0 W | 3[-2]|-1/-3 id__@_“_()__ 8_3_ 410(1/0
w(s|z2|1|3|-[32|1]3][3]2]0]3 3|10 z2|-]3]a|8]90[o[o[1]3
Sun, et. al, 2023 3|1]o]z] {3]1]o]2] [3]o]0]z Glzlole) [3]o]o]>

2 hd 2 '
_____________________) X

Weights Weight Importance Pruned Weights IXl2 1 |2 /873 Weight Importance Pruned Weights

grouped per layer Weights and activations grouped per output

https://arxiv.org/pdf/2306.11695.pdf

Wanda (contd.)

LLaMA LLaMA-2
Method Weight Update Sparsity B 13B 30B 65B B 13B 70B
Dense - 0% 59.99 6259 6538 6697 59.71 63.03 67.08
Magnitude X 50% 46.94 4761 5383 62.74 51.14 5285 60.93
SparseGPT v 50% 5494 58.61 63.09 6630 56.24 60.72 67.28
Wanda X 50% 5421 59.33 63.60 66.67 56.24 60.83 67.03
Magnitude X 4:8 46.03 50.53 53.53 62.17 50.64 52.81 60.28
SparseGPT v 4:8 52.80 5599 60.79 64.87 53.80 59.15 65.84
Wanda X 4:8 5276 56.09 61.00 64.97 5249 5875 66.06
Magnitude X 2:4 4473 48.00 53.16 61.28 45.58 49.89 59.95
SparseGPT v 2:4 50.60 53.22 5891 62.57 5094 5486 63.89
Wanda X 2:4 48.53 5230 59.21 62.84 48.75 55.03 64.14

Table 2: Mean zero-shot accuracies (%) of pruned LLaMA and LLaMA-2 models. Wanda performs
competitively against prior best method SparseGPT, without introducing any weight update.

Sun, et. al, 2023

https://arxiv.org/pdf/2306.11695.pdf

Approximation of Hessian

* Assume network learns the true p(y|x; w)
* The loss function is therefore £(w; (x,y)) = —logp(y|x; w)

* A known result is
62

E (x5 [awawT {—logp(y|x; w)}

= E(xy) [(% {logp(y|x; W)}) (% {logp(y|x; W)})T]

* Namely, Fisher Information matrix

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf

Approximation of Hessian

* Discrete format .
A == V2 Con Y))VEW: G 3
* Note: for a networkntzrzinNed to reach local minima,
= oW Gen) = 0
n=1

But the averaged outer product of gradient is NOT 0

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf

Approximation of Hessian

* But H is still too big
* Assume block-diagonal, blocks defined by network layers

0.09
0.06
0.03

-0.03

Left: True Hessian; Right: the H

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf

Approximation of Inverse Hessian

* Denote VZ(W; (X, Vn)) = G+, zlavdd introduce diagonal loading
1
EI:}VZEIQng%'FAI
n=1

* Define recursion ﬁn = ﬁn_l + %gngg, where ﬁn = A.So H = H,
 Woodbury matrix identity (Sherman—Morrison formula)
Definev,, = H,;}, 9.,

T
H'=H.!' —— where Hy' = 1711
N+gnvn

* Apply the above for each block along diagonal

Singh et. al, 2020

https://en.wikipedia.org/wiki/Woodbury_matrix_identity
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://arxiv.org/pdf/2004.14340.pdf

Full Recipe: WoodFisher

e Take N samples to estimate the block-diagonal H

e Apply Sherman—Morrison formula to invert each diagonal block of H

* Calculate weight importance score: ——
2[H]y

* Set least significant w;’s to 0. Denote the collection of these i’s as P
* Adjust remaining weights by

> T

LEP

Singh et. al, 2020

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://arxiv.org/pdf/2004.14340.pdf

Comparison

9 * —
* One-shot, compare against "
* Magnitude based 70
* Variants of WoodFisher s
Rank scores in each layer =~ = Gomwagniuce

30 Diagonal Fisher ‘
: Ra n k SCO res fo r‘ a I I We |ghts BlockWoodFisher Independent (1000, 1) ‘
20 BlockWoodFisher Independent (5000, 1) \
BlockWoodFisher Joint (1000, 1)

—#&— BlockWoodFisher Joint (5000, 1)
10

0.2 0.4 0.6 0.8 1.0

Target sparsity level

One-shot prune of resnet20 trained on cifar10

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf

