CS7150 Deep Learning

Jiaji Huang

https://jiaji-huang.github.io

04/06/2024

Trend: Model Size Grows Fast

Parameters of milestone Machine Learning systems over time n = 203

After 2018, parameter counts grow by 4 orders of magnitude, mainly due to language models Parameter Gap: Starting in 2020, we see many models below 20B parameters and above 70B parameters, but very few in the 20B-70B range.

EpochAl trends

Trend: \$\$\$\$ to Train

Estimated training compute cost in USD: using price-performance trend

Cost consists of

- Hardware
- Electricity
- Salaries

Gemini Ultra projected to be \$630 million to train (most expensive)

EpochAl trends

How about Inference cost?

- Single inference cost $\sim \sqrt{training}$
- But over the entire lifetime of a model?
- Up to 90% of total AI cost

Other Issues with Inference

- Choose edge computing due to latency and security
- But also less memory and computational power

Cartoon from <u>TowardsDataScience</u>

Agenda

- Knowledge Distillation
- Sparsity and Unstructured Pruning
- Structured Pruning
- One-shot Pruning

Knowledge Distillation (KD)

- Ask logits of small model \approx logits of big model
- Terminologies:
 - Big model: teacher
 - Small model: student
- Treat p(y|x) as "soft" label: $\min_{\theta} KL(p||q_{\theta}) \equiv \ell_{CE}(p,q_{\theta}) - H(p)$

Example: Image Classification

- Treat p as soft labels
- Also use hard label (ground-truth)
- So overall loss is
 $$\begin{split} \lambda \ell_{CE}(p,q_{\theta}) + (1-\lambda) \ell_{CE}(y,q_{\theta}) \\ 0 < \lambda \leq 1 \end{split}$$

Example: Image Classification

- Teacher in eval mode
- Student in training mode
- may introduce a temperature parameter T > 0
- Smaller *T*: more deterministic
- $T = 0 \equiv \arg \max$
- Optionally add "hard" loss

teacher.eval() # Teacher set to evaluation mode
student.train() # Student to train mode

```
for epoch in range(epochs):
    running_loss = 0.0
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)
```

optimizer.zero_grad()

Forward pass with the teacher model - do not save gradients here as we do not change the teacher's weights

> with torch.no_grad(): teacher_logits = teacher(inputs)

Forward pass with the student model
student_logits = student(inputs)

#Soften the student logits by applying softmax first and log() second soft_targets = nn.functional.softmax(teacher_logits / T, dim=-1) soft_prob = nn.functional.log_softmax(student_logits / T dim=-1)

Calculate the soft targets loss. Scaled by T**2 as suggested by the authors of the paper "Distilling the knowledge in a neural network"

soft_targets_loss = torch.sum(soft_targets * (soft_targets.log() - soft_prob)) /
soft_prob.size()[0] * (T**2)

Calculate the true label loss
label_loss = ce_loss(student_logits, labels)

Weighted sum of the two losses

loss = soft_target_loss_weight * soft_targets_loss + ce_loss_weight * label_loss

loss.backward()
optimizer.step()

Example from pyTorch tutorial

Discussion

- Benefit of soft labels by teacher? Variance reduction (Zhou et.al, 2021)
- Train student on the same data as teacher?
- Shallower or narrower student?
- How to decide student's architecture? (Layer similarity index?)

Teacher-Student Gap

- Stronger teacher doesn't necessarily benefit student
- Teacher label becomes "harder", not much additional information than ground- truth label
- Too complicated decision boundary for student to mimic

Figure 2: Distillation performance with increasing teacher size. The number of convolutional layers in student is 2.

Teacher-Student Gap

• Given the teacher, there is a "best" choice of student architecture

Figure 3: Percentage of distilled student performance increase over the performance when it learns from scratch with varying student size. The teacher has 10 layers.

Teaching Assistant

• When the teacher-student gap is too big

Figure 1: TA fills the gap between student & teacher

Table 2: Student's accuracy given varied TA sizes for (S=2, T=10)

Model	Dataset	TA=8	TA=6	TA=4	
CNN	CIFAR-10 CIFAR-100	72.75 44.28	73.15 44.57	73.51 44.92	

Table 3: Student's accuracy given varied TA sizes for (S=8, T=110)

Model	Dataset	TA=56	TA=32	TA=20	TA=14
ResNet	CIFAR-10	88.70	88.73	88.90	88.98
	CIFAR-100	61.47	61.55	61.82	61.5

Other Distillation Criteria

- Optionally ask intermediate features to be close
- May introduce a projector if feature dimensions differ $\min_{\theta,W} ||Wf_t f_s(\theta)||^2$

KD for Pretrained LMs: Distilbert

- Student architecture
 - half as deep as teacher
 - Initialized from every other layer of teacher
 - Keep same hidden dimensions
- Training loss $\ell_{CE}(p,q_{\theta}) \alpha \cos(h_t,h_s)$
- Training data:

Same pretraining material as BERT

Sanh, et. al, 2020

KD for Pretrained LMs: Distilbert

• Evaluation 1: Retains accuracy

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

• Evaluation 2: faster

Table 3: **DistilBERT is significantly smaller while being constantly faster.** Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)		
ELMo	180	895		
BERT-base	110	668		
DistilBERT	66	410		

Sanh, et. al, 2020

A few Variants

- Patient KD (Sun, et. al, 2019): Some variations on training loss
 - Cos loss for intermediate hidden features
 - Downstream task-specific training loss
- Tiny BERT (Jiao, et. al, 2020): task specific distillation

Figure 1: The illustration of TinyBERT learning.

• <u>DistilGPT-2</u>: Same as distilbert but for decoder model

KD for LLM

• LLM's training data is proprietary

More on KD loss

- Forward KL is commonly seen $\min_{\theta} KL(p||q_{\theta}) \equiv \ell_{CE}(p,q_{\theta}) - H(p)$
- Backward KL $\min_{\theta} KL(q_{\theta} || p) \equiv \ell_{CE}(q_{\theta}, p) - H(q_{\theta})$
- Coverage vs. preciseness
- Choice should be task-dependent
 - Machine translation, less modes, forward KL
 - Dialog, more modes, backward KL

Forward KL: covers all mode of p, less precise Backward KL: mode seeking

Agenda

- Knowledge Distillation
- Sparsity and Unstructured Pruning
- Structured Pruning
- One-shot Pruning

Unstructured pruning

- Force weights to be 0. Sparsity pattern is unstructured
- e.g., y = Wx prune A to 20% sparsity but in a unstructured way

- Saves storage, but not necessarily speedup
- As GPU is good at dense matrix operations

- Recipe:
- 1. Train as usual
- 2. Set w_i to 0 if $|w_i|$ small
- 3. Keep the unpruned weights, and further train (don't re-initialize!)
- 2-3 can be repeated for multiple rounds (suggested)

• Q: why not just impose ℓ_1 regularization at training?

• Reduced number of parameters Significantly

Layer	Weights	FLOP	Act%	Weights%	FLOP%	Remaining Parameters	Pruned Parameters
conv1	35K	211M	88%	84%	84%	60M	
conv2	307K	448M	52%	38%	33%	4514	
conv3	885K	299M	37%	35%	18%	45M	
conv4	663K	224M	40%	37%	14%	30M	
conv5	442K	150M	34%	37%	14%		
fc1	38M	75M	36%	9%	3%	15M	
fc2	17M	34M	40%	9%	3%		
fc3	4M	8M	100%	25%	10%	M <u> </u>	
Total	61M	1.5B	54%	11%	30%	CON CON CON CON CON	40 40 40 40 40

Pruning AlexNet: reduces the number of weights by 9× and computation by 3×

Han, et. al, 2015

Accuracy-efficiency trade-off

- Trade-off at different layers
- Top layer is more prunable

Hessian Based: Optimal Brain Damage (OBD)

- Perturb network weights, w o w'. Denote $\delta riangle w' w$
- Loss on all training data $\mathcal{L}(w) \triangleq \frac{1}{N} \sum_{n=1}^{N} \ell(w, x_n)$, change of loss is: $\Delta_{\mathcal{L}} \triangleq \mathcal{L}(w') - \mathcal{L}(w) \approx \langle \nabla \mathcal{L}(w), \delta \rangle + \frac{1}{2} \delta^T H \delta$
- $\nabla \mathcal{L}(w) = \mathbf{0}$ at local minimum
- $H_{i,j} = \frac{\partial^2 \mathcal{L}}{\partial w_i \partial w_j}$ is Hessian and $\Delta_{\mathcal{L}} = \frac{1}{2} \sum_{i,j} H_{i,j} \delta_i \delta_j$
- Note: *H* is # param × # param, and requires some samples to estimate

OBD (contd.)

- Diagonalize: set $H_{i,j} = 0$ for $i \neq j$
- So $\Delta_{\mathcal{L}} = \sum_{i} H_{i,i} \, \delta_i^2$
- If we sparsify w_i to 0, then $\delta_i = -w_i$, and $\Delta_{\mathcal{L}} = \sum_i H_{i,i} w_i^2$
- So we have an importance score for all w_i 's:

$$H_{i,i}w_i^2 \equiv \frac{\partial^2 \ell}{\partial w_i^2} \cdot w_i^2$$

• Set $w_i = 0$ if $|H_{i,i}w_i^2|$ small

Discussion

- Magnitude based vs. Hessian based, which one is better?
- Hard to answer. Performance depends on
 - Network structure
 - Pruning percentage
 - Sample data to estimate the Hessian

Agenda

- Knowledge Distillation
- Sparsity and Unstructured Pruning
- Structured Pruning
- One-shot Pruning

Unstructured Sparsity ≠ Speedup

Unstructured sparsity pattern induces irregular memory access

AlexNet on GPU platforms and the sparsity. 95% sparsity leads to <1.5 speedup only.

Wen, et. al, 2016

Structured Sparsity for Linear Layers

• Remove a row in matrix W amounts to remove an output neuron

- Remove a neuron at input?
- Remove a neuron in a middle layer?

Structured Sparsity for Conv layers

• Pruning a 3D-filter amounts to remove an output channel

• Finer granularity: Pruning a 2D filter

Li, et. al, 2017, Wen, et. al, 2016

Recipe

1. Determine sparsity pattern:

Choice 1: Set groups with small magnitude $(\sum_{i \in G} |w_i|)$ to 0 (<u>Li, et. al, 2017</u>) Choice 2: Couple with training (<u>Wen et. al, 2016</u>):

• Train with original loss, plus a group lasso regularization: \sum_{G}

$$\sqrt{\sum_{i\in\mathcal{G}}w_i^2}$$

- Converge to sparse groups of weights
- 2. Fix the sparse pattern, and retrain remaining weights
- 3. Optionally repeat 1-2

Compare against Unstructured Pruning

Notable speedup

Deeper layers are more prunable

Structured Sparsity On Transformer Block

• Recap of a transformer block

Formalize Attention Heads

- Each attention head output a vector $f_i(\cdot; \boldsymbol{W}_i^Q, \boldsymbol{W}_i^K, \boldsymbol{W}_i^V)$
- Overall output is their linear combination _

Removal of Attention Heads

- Magnitude based Pruning? $|\boldsymbol{W}_i^{O}| + \left|\boldsymbol{W}_i^{Q}\right| + \left|\boldsymbol{W}_i^{K}\right| + \left|\boldsymbol{W}_i^{V}\right|$
- Smaller weights are not necessarily less important
- Hessian based approach? But how?
- Introduce a mask variable $m_{i,t}$ for each head

$$\boldsymbol{O} = \sum_{h=1}^{n} m_i Att_i(\cdot, \boldsymbol{W}_i)$$

• Derive 2nd order gradient w.r.t. m_i

Agenda

- Knowledge Distillation
- Sparsity and Unstructured Pruning
- Structured Pruning
- One-shot Pruning

Recap the General Pruning Recipe

- 1. Prune (set to 0 according to some importance score)
- 2. Adjust remaining weights by re-training
- 3. Iterate 1-2

One-shot Prune with Hessian

- Once we set a $w_i = 0$, adjust $w_j \ (j \neq p)$ to: $\min_{\delta} \left\{ \Delta \equiv \frac{1}{2} \, \delta^T H \delta \right\}, \text{ s.t. } \delta_i = -w_i$
- Introduce Lagrange multiplier λ

$$\mathbb{L}(\lambda, \boldsymbol{\delta}) = \frac{1}{2}\boldsymbol{\delta}^T \boldsymbol{H}\boldsymbol{\delta} + \lambda (\boldsymbol{e}_i^T \boldsymbol{\delta} + w_i)$$

- Set $\mathbb{L}'(\boldsymbol{\delta}) = 0 \implies \boldsymbol{\delta}^* = -\lambda \boldsymbol{H}^{-1} \boldsymbol{e}_i$
- Plug $\boldsymbol{\delta}^*$ back into \mathbb{L} , $\mathbb{L}(\lambda) = -\frac{\lambda^2}{2} \boldsymbol{e}_i^T \boldsymbol{H}^{-1} \boldsymbol{e}_i + \lambda w_i$
- Solve $\mathbb{L}'(\lambda) = 0 \Longrightarrow \lambda^* = w_i / [H^{-1}]_{i,i}$

Singh et. al, 2020

One-shot Prune with Hessian

•
$$\delta^* = -\lambda H^{-1} e_i$$
 and $\lambda^* = w_i / [H^{-1}]_{i,i}$
• So $\delta^* = -\frac{w_i [H^{-1}]_{i,i}}{[H^{-1}]_{i,i}} \longrightarrow$ i-th column of H^{-1}

• Correspondingly,
$$\Delta^* = \frac{w_i^2}{2[H^{-1}]_{i,i}}$$
 (Note $H[H^{-1}]_{\cdot,i} = e_i$)

• Importance score for weight
$$w_i$$
:

$$\frac{w_i^2}{2[H^{-1}]_{i,i}}$$

Q: how to recover the OBD method by assuming special form of **H**?

An Example: Layer-wise One-shot Pruning

- Prune weight of a linear layer, W to sparse \widehat{W} , so that $\min_{\widehat{W}} \|WX \widehat{W}X\|^2$
- Rows are independent. So just consider $\min \mathcal{L}_i \equiv \left(\widehat{W}_{i,:}X W_{i,:}X\right)^2$
- We can apply results before: as
 - $\widehat{W}_{i,j} = W_{i,j} + \delta_j$ where $\delta_j = -W_{i,j}$ for some $W_{i,j}$ to be zero-ed
- Hessian w.r.t. $W_{i,:}$ is $C = XX^T$ (input covariance)
- Importance score for $W_{i,j}$: $\frac{W_{i,j}^2}{[\mathcal{C}^{-1}]_{j,j}}$

More Simplified

Wanda (Pruning by Weights and activations)

• What if we assume C diagonal?

$$[\mathbf{C}^{-1}]_{j,j} = \mathbf{C}^{-1}_{j,j} = \|\mathbf{X}_{j,:}\|^{-2}$$

• So importance score is

$$\frac{W_{i,j}^2}{[\mathbf{C}^{-1}]_{j,j}} = W_{i,j}^2 \|\mathbf{X}_{j,:}\|^2$$

Sun, et. al, 2023

Wanda (contd.)

			LLaMA			LLaMA-2			
Method	Weight Update	Sparsity	7B	13 B	30B	65B	7B	13 B	70B
Dense -		0%	59.99	62.59	65.38	66.97	59.71	63.03	67.08
Magnitude X		50%	46.94	47.61	53.83	62.74	51.14	52.85	60.93
SparseGPT	1	50%	54.94	58.61	63.09	66.30	56.24	60.72	67.28
Wanda	×	50%	54.21	59.33	63.60	66.67	56.24	60.83	67.03
Magnitude	×	4:8	46.03	50.53	53.53	62.17	50.64	52.81	60.28
SparseGPT	1	4:8	52.80	55.99	60.79	64.87	53.80	59.15	65.84
Wanda	×	4:8	52.76	56.09	61.00	64.97	52.49	58.75	66.06
Magnitude	×	2:4	44.73	48.00	53.16	61.28	45.58	49.89	59.95
SparseGPT	1	2:4	50.60	53.22	58.91	62.57	50.94	54.86	63.89
Wanda	×	2:4	48.53	52.30	59.21	62.84	48.75	55.03	64.14

Table 2: Mean zero-shot accuracies (%) of pruned LLaMA and LLaMA-2 models. Wanda performs competitively against prior best method SparseGPT, without introducing any weight update.

Approximation of Hessian

- Assume network learns the true p(y|x; w)
- The loss function is therefore $\ell(w; (x, y)) = -\log p(y|x; w)$
- A known result is $\mathbb{E}_{(x,y)} \left[\frac{\partial^2}{\partial w \partial w^T} \{-\log p(y|x;w)\} \right]$ $= \mathbb{E}_{(x,y)} \left[\left(\frac{\partial}{\partial w} \{\log p(y|x;w)\} \right) \left(\frac{\partial}{\partial w} \{\log p(y|x;w)\} \right)^T \right]$
- Namely, Fisher Information matrix

Approximation of Hessian

• Discrete format

$$\widehat{\boldsymbol{H}} = \frac{1}{N} \sum_{n=1}^{N} \nabla \ell(\boldsymbol{w}; (\boldsymbol{x}_n, y_n)) \nabla \ell(\boldsymbol{w}; (\boldsymbol{x}_n, y_n))^T$$

• Note: for a network trained to reach local minima,

$$\frac{1}{N}\sum_{n=1}^{N}\nabla\ell(\boldsymbol{w};(\boldsymbol{x}_{n},y_{n}))=0$$

But the averaged outer product of gradient is **NOT 0**

Approximation of Hessian

- But **H** is still too big
- Assume block-diagonal, blocks defined by network layers

Left: True Hessian; Right: the \widehat{H}

Singh et. al, 2020

Approximation of Inverse Hessian

- Denote $\nabla \ell(\boldsymbol{w}; (\boldsymbol{x}_n, y_n)) \triangleq \boldsymbol{g}_n$, add introduce diagonal loading $\widehat{\boldsymbol{H}} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{g}_n \boldsymbol{g}_n^T + \lambda \boldsymbol{I}$ Define recursion $\widehat{\boldsymbol{H}}_n = \widehat{\boldsymbol{H}}_{n-1} + \frac{1}{N} \boldsymbol{g}_n \boldsymbol{g}_n^T$, where $\widehat{\boldsymbol{H}}_n = \lambda \boldsymbol{I}$. So $\widehat{\boldsymbol{H}} = \widehat{\boldsymbol{H}}_N$
- Woodbury matrix identity (Sherman–Morrison formula)

Define
$$\boldsymbol{v}_n = \widehat{\boldsymbol{H}}_{n-1}^{-1} \boldsymbol{g}_n$$

 $\widehat{\boldsymbol{H}}_n^{-1} = \widehat{\boldsymbol{H}}_{n-1}^{-1} - \frac{\boldsymbol{v}_n \boldsymbol{v}_n^T}{N + \boldsymbol{g}_n^T \boldsymbol{v}_n}$, where $\widehat{\boldsymbol{H}}_0^{-1} = \lambda^{-1} \boldsymbol{H}_0^{-1}$

Apply the above for each block along diagonal

Singh et. al, 2020

Full Recipe: WoodFisher

- Take N samples to estimate the block-diagonal \widehat{H}
- Apply <u>Sherman–Morrison formula</u> to invert each diagonal block of \widehat{H}
- Calculate weight importance score: $\frac{w_i^2}{2[H^{-1}]_{ii}}$
- Set least significant w_i 's to 0. Denote the collection of these *i*'s as \mathcal{P}
- Adjust remaining weights by

$$\sum_{i\in\mathcal{P}}^{\prime}-\frac{w_i[H^{-1}]_{\cdot,i}}{[H^{-1}]_{i,i}}$$

Comparison

- One-shot, compare against
 - Magnitude based
 - OBD (diagonal Fisher)
- Variants of WoodFisher
 - Independent: Rank scores in each layer
 - Joint: Rank scores for all weights

One-shot prune of resnet20 trained on cifar10