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Trend: Model Size Grows Fast

EpochAI trends

Parameter Gap: Starting in 2020, we see many models below 
20B parameters and above 70B parameters, but very few in 
the 20B-70B range.

After 2018, parameter counts grow by 4 
orders of magnitude, mainly due to 
language models

https://epochai.org/blog/machine-learning-model-sizes-and-the-parameter-gap


Trend: $$$$ to Train
Cost consists of
• Hardware
• Electricity
• Salaries

Gemini Ultra projected to be $630 
million to train (most expensive)

EpochAI trends

https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems


How about Inference cost?

• Single inference cost ~ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
• But over the entire lifetime of a model?
• Up to 90% of total AI cost

EpochAI trends and Desislavov et. al, 2023

https://epochai.org/blog/trading-off-compute-in-training-and-inference
https://www.sciencedirect.com/science/article/pii/S2210537923000124


Other Issues with Inference

• Choose edge computing due to latency and security
• But also less memory and computational power

Cartoon from TowardsDataScience

https://towardsdatascience.com/deep-learning-on-the-edge-9181693f466c


Agenda

• Knowledge Distillation
• Sparsity and Unstructured Pruning
• Structured Pruning
• One-shot Pruning



Knowledge Distillation (KD)

• Ask logits of small model ≈ logits of big model
• Terminologies:
• Big model: teacher
• Small model: student

• Treat 𝑝(𝑦|𝑥) as “soft” label:
min
!
𝐾𝐿(𝑝| 𝑞!  ≡ ℓ"# 𝑝, 𝑞! −𝐻(𝑝)

Hinton et. al, 2015

https://arxiv.org/pdf/1503.02531.pdf


Example: Image Classification

Example from pyTorch tutorial

• Treat 𝑝 as soft labels
• Also use hard label

(ground-truth)
• So overall loss is
𝜆ℓ"# 𝑝, 𝑞! + 1 − 𝜆 ℓ"# 𝑦, 𝑞!
0 < 𝜆 ≤ 1

𝑞!

𝑝

https://pytorch.org/tutorials/beginner/knowledge_distillation_tutorial.html


Example: Image Classification

Example from pyTorch tutorial

• Teacher in eval mode
• Student in training mode
• may introduce a temperature 

parameter 𝑇 > 0
• Smaller 𝑇: more deterministic
• 𝑇 = 0 ≡ argmax
• Optionally add “hard” loss

https://pytorch.org/tutorials/beginner/knowledge_distillation_tutorial.html


Discussion

• Benefit of soft labels by teacher? Variance reduction (Zhou et.al, 2021)
• Train student on the same data as teacher?
• Shallower or narrower student?
• How to decide student’s architecture? (Layer similarity index?)

https://arxiv.org/pdf/2102.00650.pdf


Teacher-Student Gap

• Stronger teacher doesn’t necessarily benefit student
• Teacher label becomes “harder”, not much additional information 

than ground- truth label
• Too complicated decision boundary for student to mimic

Mirzadeh et. al, 2020

https://ojs.aaai.org/index.php/AAAI/article/view/5963


Teacher-Student Gap

• Given the teacher, there is a “best” choice of student architecture

Mirzadeh et. al, 2020

file:///%5C%5CUsers%5Cjiajihug%5CDownloads%5C5963-Article%2520Text-9188-1-10-20200513.pdf


Teaching Assistant

• When the teacher-student gap is too big

Mirzadeh et. al, 2020

file:///%5C%5CUsers%5Cjiajihug%5CDownloads%5C5963-Article%2520Text-9188-1-10-20200513.pdf


Other Distillation Criteria

• Optionally ask intermediate 
features to be close
• May introduce a projector if

feature dimensions differ
min
!,%

𝑊𝑓& − 𝑓'(𝜃) (



KD for Pretrained LMs: Distilbert

• Student architecture
• half as deep as teacher
• Initialized from every other layer

of teacher
• Keep same hidden dimensions

• Training loss
ℓ"# 𝑝, 𝑞! − 𝛼 cos(ℎ& , ℎ')
• Training data:
  Same pretraining material as BERT

[mask] [mask]

CE

𝑞!

𝑝

cos

Sanh, et. al, 2020

https://arxiv.org/pdf/1910.01108.pdf


KD for Pretrained LMs: Distilbert

• Evaluation 1: Retains accuracy

• Evaluation 2: faster

Sanh, et. al, 2020

https://arxiv.org/pdf/1910.01108.pdf


A few Variants

• Patient KD (Sun, et. al, 2019): Some variations on training loss
• Cos loss for intermediate hidden features
• Downstream task-specific training loss

• Tiny BERT (Jiao, et. al, 2020): task specific distillation

• DistilGPT-2: Same as distilbert but for decoder model

https://arxiv.org/pdf/1908.09355.pdf
https://arxiv.org/pdf/1909.10351.pdf
https://huggingface.co/distilbert/distilgpt2


KD for LLM

• LLM’s training data is proprietary

Xu, et. al, 2024

https://arxiv.org/pdf/2402.13116.pdf


More on KD loss

• Forward KL is commonly seen
min
!
𝐾𝐿(𝑝| 𝑞!  ≡ ℓ"# 𝑝, 𝑞! −𝐻(𝑝)

• Backward KL
min
!
𝐾𝐿(𝑞!||𝑝) ≡ ℓ"# 𝑞! , 𝑝 − 𝐻(𝑞!)

• Coverage vs. preciseness
• Choice should be task-dependent
• Machine translation, less modes, forward KL
• Dialog, more modes, backward KL

Forward KL: covers all mode of 𝑝, less precise
Backward KL: mode seeking



Agenda

• Knowledge Distillation
• Sparsity and Unstructured Pruning
• Structured Pruning
• One-shot Pruning



Unstructured pruning

• Force weights to be 0. Sparsity pattern is unstructured
• e.g., 𝒚 = 𝑾𝒙 prune 𝐴 to 20% sparsity but in a unstructured way

• Saves storage, but not necessarily speedup
• As GPU is good at dense matrix operations

𝑾 𝒙



Magnitude Based Approach

• Recipe:
1. Train as usual 
2. Set 𝑤)  to 0 if 𝑤)  small
3. Keep the unpruned weights, and further train
 (don’t re-initialize!) 
 2-3 can be repeated for multiple rounds (suggested)

• Q: why not just impose ℓ* regularization at training?

Han, et. al, 2015

https://arxiv.org/pdf/1506.02626.pdf


Magnitude Based Approach

• Reduced number of parameters Significantly

Han, et. al, 2015

Pruning AlexNet: reduces the number of weights by 9× and computation by 3×

https://arxiv.org/pdf/1506.02626.pdf


Magnitude Based Approach

• Accuracy-efficiency trade-off

without retraining: ℓ! 
better than weight decay

with retraining: weight 
decay better than ℓ!



Magnitude Based Approach

• Trade-off at different layers
• Top layer is more prunable



Hessian Based: Optimal Brain Damage (OBD)

• Perturb network weights, 𝒘 → 𝒘+. Denote 𝜹 ≜ 𝒘+ −𝒘

• Loss on all training data ℒ 𝒘 ≜ *
,
∑-.*, ℓ(𝒘, 𝒙-), change of loss is:

∆ℒ≜ ℒ 𝒘+ − ℒ 𝒘 ≈ ∇ℒ 𝒘 , 𝜹 +
1
2
𝜹0𝑯𝜹

• ∇ℒ 𝒘 = 𝟎 at local minimum

• 𝑯),1 =
2"ℒ

23#23$
 is Hessian and ∆ℒ=

*
(
∑),1𝐻),1𝛿) 𝛿1

• Note: 𝐻 is # param × # param, and requires some samples to estimate

0

Lecun, et. al, 1989

https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf


OBD (contd.)

• Diagonalize: set 𝐻),1 = 0 for 𝑖 ≠ 𝑗
• So ∆ℒ= ∑)𝐻),) 𝛿)(

• If we sparsify 𝑤)  to 0, then 𝛿) = −𝑤), and ∆ℒ= ∑)𝐻),) 𝑤)(

• So we have an importance score for all 𝑤)’s:

𝐻),)𝑤)( ≡
𝜕(ℓ
𝜕𝑤)(

f 𝑤)(

• Set 𝑤) = 0 if 𝐻),)𝑤)(  small



Discussion

• Magnitude based vs. Hessian based, which one is better?
• Hard to answer. Performance depends on
• Network structure
• Pruning percentage
• Sample data to estimate the Hessian



Agenda

• Knowledge Distillation
• Sparsity and Unstructured Pruning
• Structured Pruning
• One-shot Pruning



Unstructured Sparsity ≠ Speedup

Wen, et. al, 2016

AlexNet on GPU platforms and the sparsity. 95% sparsity leads to 
<1.5 speedup only.

Unstructured sparsity pattern induces irregular memory access

https://arxiv.org/pdf/1608.03665.pdf


Structured Sparsity for Linear Layers

• Remove a row in matrix 𝑾 amounts to remove an output neuron

• Remove a neuron at input?
• Remove a neuron in a middle layer?

𝑾 𝒙
𝑾𝒙 𝑾𝒙



Structured Sparsity for Conv layers

• Pruning a 3D-filter amounts to remove an output channel

• Finer granularity: Pruning a 2D filter

Li, et. al, 2017, Wen, et. al, 2016

https://openreview.net/pdf?id=rJqFGTslg
https://arxiv.org/pdf/1608.03665.pdf


Magnitude Based Approach

Recipe
1. Determine sparsity pattern:
   Choice 1: Set groups with small magnitude (∑)∈𝒢 |𝑤)|) to 0 (Li, et. al, 2017)
   Choice 2: Couple with training (Wen et. al, 2016):

• Train with original loss, plus a group lasso regularization: ∑𝒢 ∑$∈𝒢𝑤$&

• Converge to sparse groups of weights

2. Fix the sparse pattern, and retrain remaining weights
3. Optionally repeat 1-2

https://openreview.net/pdf?id=rJqFGTslg
https://arxiv.org/pdf/1608.03665.pdf


Compare against Unstructured Pruning

• Notable speedup

Alexnet on ImageNet
Deeper layers are more prunable



Structured Sparsity On Transformer Block

• Recap of a transformer block



Formalize Attention Heads

• Each attention head output a vector 𝑓)(f;𝑾)
6 ,𝑾)

7 ,𝑾)
8)

• Overall output is their linear combination

𝑶 = 𝑾9
𝑓*(f;𝑾*

6 ,𝑾*
7 ,𝑾*

8) 
⋮

𝑓:(f;𝑾:
6 ,𝑾:

7 ,𝑾:
8 )

	

=k
).*

:

𝑾)
9𝑓)(f;𝑾)

6 ,𝑾)
7 ,𝑾)

8) ≡ 𝐴𝑡𝑡)(f;𝑾))

Where 𝑾) ≜ {𝑾)
9 ,𝑾)

6 ,𝑾)
7 ,𝑾)

8}



Removal of Attention Heads

• Magnitude based Pruning?
|𝑾)

9| + 𝑾)
6 + 𝑾)

7 + |𝑾)
8|

• Smaller weights are not necessarily less important
• Hessian based approach? But how?
• Introduce a mask variable 𝑚)  for each head

𝑶 = k
;.*

:

𝑚)𝐴𝑡𝑡)(f,𝑾))

• Derive 2nd order gradient w.r.t. 𝑚)

Kwon et. al, 2022

https://proceedings.neurips.cc/paper_files/paper/2022/file/987bed997ab668f91c822a09bce3ea12-Paper-Conference.pdf


Agenda

• Knowledge Distillation
• Sparsity and Unstructured Pruning
• Structured Pruning
• One-shot Pruning



Recap the General Pruning Recipe

1. Prune (set to 0 according to some importance score)
2. Adjust remaining weights by re-training
3. Iterate 1-2

       
       
        

Magnitude based

Hessian based
Get rid off retraining?



One-shot Prune with Hessian

• Once we set a 𝑤) = 0, adjust 𝑤1 	(𝑗 ≠ 𝑝) to:

min
𝜹

∆≡ *
(
𝜹0𝑯𝜹 , s.t. 𝛿) = −𝑤)

• Introduce Lagrange multiplier 𝜆

𝕃 𝜆, 𝜹 = *
(
𝜹0𝑯𝜹 + 𝜆 𝒆)0𝜹 + 𝑤)

• Set 𝕃+ 𝜹 = 0 ⟹	𝜹∗ = −𝜆𝑯>*𝒆)
• Plug 𝜹∗ back into 𝕃, 𝕃 𝜆 = − ?"

(
𝒆)0𝑯>*𝒆) + 𝜆𝑤)

• Solve 𝕃+ 𝜆 = 0 ⟹ 𝜆∗ = 𝑤)/ 𝑯>*
),)

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf


One-shot Prune with Hessian

• 𝜹∗ = −𝜆𝑯>*𝒆)  and 𝜆∗ = 𝑤)/ 𝑯>*
),)

• So 𝜹∗ = −
3# 𝑯%& ',#
𝑯%& #,#

• Correspondingly, Δ∗ = 𝒘#
"

( 𝑯%& #,#
 (Note 𝑯 𝑯>*

B,) = 𝒆))

• Importance score for weight 𝑤):
𝑤)(

2 𝑯>*
),)

Q: how to recover the OBD method by assuming special form of 𝑯?

i-th column of 𝑯'(

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf


An Example: Layer-wise One-shot Pruning

• Prune weight of a linear layer, 𝑾 to sparse t𝑾, so that
min
C𝑾

𝑾𝑿−t𝑾𝑿 (

• Rows are independent. So just consider minℒ) ≡ t𝑾),:𝑿 −𝑾),:𝑿
(

• We can apply results before: as
• #𝑾$,* = 𝑾$,* + 𝛿* where 𝛿* = −𝑾$,* for some 𝑾$,* to be zero-ed

• Hessian w.r.t. 𝑾),: is 𝑪 = 𝑿𝑿0  (input covariance)

• Importance score for 𝑊),1:   
%#,$
"

𝑪%& $,$

Frantar et. al, 2023 and sparseGPT

https://arxiv.org/pdf/2301.00774.pdf
https://arxiv.org/pdf/2301.00774.pdf


More Simplified

Wanda (Pruning by Weights and activations)
• What if we assume 𝐶 diagonal?

𝑪>* 1,1 = 𝑪>*1,1 = 𝑿1,:
>(

• So importance score is
𝑊),1

(

𝑪>* 1,1
= 𝑊),1

( 𝑿1,:
(

Sun, et. al, 2023

https://arxiv.org/pdf/2306.11695.pdf


Wanda (contd.)

Sun, et. al, 2023

https://arxiv.org/pdf/2306.11695.pdf


Approximation of Hessian 

• Assume network learns the true 𝑝(𝑦|𝒙;𝒘)
• The loss function is therefore ℓ(𝒘; (𝒙, 𝑦)) = − log 𝑝(𝑦|𝒙;𝒘)
• A known result is

𝔼(𝒙,I)
𝜕(

𝜕𝒘𝜕𝒘0 −log 𝑝(𝑦|𝒙;𝒘)

= 𝔼(𝒙,I)
𝜕
𝜕𝒘

log 𝑝(𝑦|𝒙;𝒘)
𝜕
𝜕𝒘

log 𝑝(𝑦|𝒙;𝒘)
0

• Namely, Fisher Information matrix

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf


Approximation of Hessian 

• Discrete format

z𝑯 =
1
𝑁
k
-.*

,

∇ℓ(𝒘; (𝒙- , 𝑦-))∇ℓ(𝒘; (𝒙- , 𝑦-))0 	

• Note: for a network trained to reach local minima,
1
𝑁
k
-.*

,

∇ℓ(𝒘; (𝒙- , 𝑦-)) = 0

But the averaged outer product of gradient is NOT 0

Singh et. al, 2020

https://arxiv.org/pdf/2004.14340.pdf


Approximation of Hessian 

• But 𝑯 is still too big
• Assume block-diagonal, blocks defined by network layers

Singh et. al, 2020

Left: True Hessian;  Right: the !𝑯

https://arxiv.org/pdf/2004.14340.pdf


Approximation of Inverse Hessian 

• Denote ∇ℓ(𝒘; (𝒙- , 𝑦-)) ≜ 𝒈-, add introduce diagonal loading

)𝑯 =
1
𝑁#
!"#

$

𝒈!𝒈!% + 𝜆𝑰

• Define recursion (𝑯! = (𝑯!&# +
#
$
𝒈!𝒈!% , where (𝑯! = 𝜆𝑰. So z𝑯 = (𝑯$

• Woodbury matrix identity (Sherman–Morrison formula)
Define 𝒗- = z𝑯->*

>* 𝒈-
z𝑯-
>* = z𝑯->*

>* − 𝒗)𝒗)*

,L𝒈)*𝒗)
,  where z𝑯N

>* = 𝜆>*𝑰

• Apply the above for each block along diagonal
Singh et. al, 2020

https://en.wikipedia.org/wiki/Woodbury_matrix_identity
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://arxiv.org/pdf/2004.14340.pdf


Full Recipe: WoodFisher

• Take 𝑁 samples to estimate the block-diagonal z𝑯
• Apply Sherman–Morrison formula to invert each diagonal block of z𝑯

• Calculate weight importance score: 3#
"

( 𝑯%& #,#

• Set least significant 𝑤)’s to 0. Denote the collection of these 𝑖’s as 𝒫
• Adjust remaining weights by

k
)∈𝒫

−
𝑤) 𝑯>*

B,)

𝑯>*
),)

Singh et. al, 2020

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
https://arxiv.org/pdf/2004.14340.pdf


Comparison

• One-shot, compare against
• Magnitude based
• OBD (diagonal Fisher)

• Variants of WoodFisher
• Independent: Rank scores in each layer
• Joint: Rank scores for all weights

Singh et. al, 2020

One-shot prune of resnet20 trained on cifar10

https://arxiv.org/pdf/2004.14340.pdf

