
CS7150 Deep Learning
Jiaji Huang

https://jiaji-huang.github.io
01/13/2024

About the lecturer

• PhD in electrical engineering from Duke University
• Thesis: statistical signal processing and machine learning
• Worked at Baidu Research on NLP and Speech
• Now at AWS, on Large Language Models

Agenda

• About this class
• Deep Learning nowadays
• Programming
• Math

What to learn from the class

• Basic building blocks, concepts
• e.g., conv layer, attention layer, optimizers, overfitting

• Important applications
• e.g., language modeling

• Recent topics
• e.g., model compression

After the class, you should be

• able to implement and train typical deep nets
• aware of some emerging trends in the fields
• able to read recent deep learning papers

This class is not expected to …

• teach coding with pytorch
• be a introductory course for machine learning

Logistics

• Classes
• Each Saturday 9:00am-12:20pm
• Before mid-term: focus on basics
• After mid-term: advanced topics, 2-3 guest lectures (tentative)
• Homework submission deadline: Friday 11:59pm

• Syllabus: https://jiaji-huang.github.io/CS7150.html
• TA: Pratyaksh Bhalla (bhalla.pr@northeastern.edu)
• Office hours
• Lecturer: Saturday 1:00pm-3:00pm
• TA: Friday Morning

https://jiaji-huang.github.io/CS7150.html
mailto:bhalla.pr@northeastern.edu

Textbooks

Logistics

• Grades
• 20% homework + 20% paper presentation + 20% mid-term exam + 40% project
• Policy for L

• absence
• late submission of homework
• Plagiarism (Integrity policy)

• Computational resources:
• You’ll need a laptop/desktop with python3
• Khoury cloud (See instructions on syllabus page)

https://osccr.sites.northeastern.edu/academic-integrity-policy/

Paper Presentation

• Since class of 01/27, after lecture, 30min includes Q&A
• TA will generate a randomized list of presenters
• Paper selection:
• Suggested reading materials (but only papers) in previous classes
• paper identified by presenter

• Credits:
• For presenter: clear presentation, good answers, driving discussion
• For audience: raise question, involve in discussion

How to identify interesting papers

• Subscribe to arxiv cs.AI: send an email like this
To: cs@arxiv.org
Subject: subscribe yourFirstName yourLastName

add Artificial Intelligence

• Check recent accepted papers in conferences
• Learning: Neurips, ICML, ICLR, AAAI, …
• NLP: ACL, EMLNP, NAACL, …
• Computer vision: ICCV, CVPR, ECCV, ...

• Media: twitter etc.

Agenda

• About this class
• Deep Learning nowadays
• Programming
• Math

What is Deep Learning

• Neural network: aka artificial neural networks (ANN)

• Deep neural network: many layers
• Deep Learning: A sub-area of machine learning that builds deep neural

network to model the world
Illustration from https://www.ibm.com/topics/neural-networks

https://www.ibm.com/topics/neural-networks

A few more terminologies

• Hidden representations/feature maps
• Learned Representation (as apposed to hand-crafted features)
• Distributed representations
• End-to-end: jointly learn the representation for the task

Related areas

Machine Learning

Deep Learning

Computer vision
NLP, speech

Why is DL useful?

• Given enough computational power (though)

DL and vision

• Image Classification (e.g., ImageNet, 1000 classes)
• Alexnet (Krizhevsky et. al, 2012)

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

DL and vision

• Beat non-DL methods by a large margin

• Limitations
• The GPU memory was tiny (3GB), and slow
• So they have to split the layer parameters (we may talk about this later)
• and limit training time

Since AlexNet …

Trend according to paperwithcode

https://paperswithcode.com/sota/image-classification-on-imagenet

DL and vision

• Object Detection
• Fast R-CNN (Girshick 2015)
• Track trend on paperwithcode

https://arxiv.org/pdf/1504.08083v2.pdf
https://paperswithcode.com/sota/object-detection-on-pascal-voc-2007

DL and vision

• Image generation
• GAN (Goodfellow et. al, 2014) • Stable Diffusion

https://arxiv.org/pdf/1406.2661.pdf
https://stablediffusion.fr/prompts

DL and Speech

• Speech Recognition

• Check trend of Word Error Rate (WER) on paperwithcode

Illustration from this blogpost

https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean
https://www.gosmar.eu/machinelearning/2020/05/25/neural-networks-and-speech-recognition/

DL and Speech

• Speech synthesis
• Wavenet

https://deepmind.google/discover/blog/wavenet-a-generative-model-for-raw-audio/

DL and NLP

• Language Understanding

Illustrations from here and here

https://www.creatingsmarthome.com/index.php/2020/09/19/amazon-echo-or-google-home-with-home-assistant/
https://developer.amazon.com/en-US/alexa/alexa-skills-kit/nlu

DL and NLP

• Language generation
• conversation • Translation

• Summarization
• Essay writing
• ….

DL and NLP

Taxonomy of language models from this page (outdated of course)

https://fineproxy.org/wiki/bertology/

DL and multi-modality

• Gemini

https://www.youtube.com/watch?v=UIZAiXYceBI

DL and Decision Making

Images from here and here

https://www.bbc.com/news/technology-35785875
https://arxiv.org/pdf/2209.05309.pdf

DL and Science

• AlphaFold

Illustration from wiki

https://en.wikipedia.org/wiki/AlphaFold

DL and Science
• Drug discovery

Illustrations from here and here

• Weather forecasting

https://www.technologynetworks.com/drug-discovery/news/deep-learning-3d-technology-to-improve-drug-design-329225
https://developer.nvidia.com/blog/deep-learning-accurately-forecasts-extreme-weather-events/

DL and Social Science

• Modeling spread of Covid

Illustrations from here and here

• Recommendation system

https://gm-neurips-2020.github.io/master-deck.pdf
https://www.uber.com/blog/uber-eats-graph-learning/

Open Problems

• Con-convex optimization
• Training could land at somewhere sub-optimal
• where we land at is non-deterministic due to

• Randomness in Initialization
• Randomness in feeding training data
• Hyper parameters like learning rate

• As apposed to convex optimization
• Unique or at least equally good minimums
• Convergence Guarantees

Open Problems

• Generalization
• Traditional wisdom: model with many parameters may overfit
• Challenges traditional wisdom (Zhang et.al 2017)

• Robustness

https://arxiv.org/abs/1611.03530

Open Problems

• Interpretability
• What feature is responsible
• What training sample is responsible

• Factuality, Hallucination

Open Problems

• Model efficiency

• Neural Architecture Search

Illustration from here and here

https://medium.com/mlearning-ai/optimizing-deep-learning-models-with-pruning-a-practical-guide-163e990c02af
https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764

Open Problems

• After transformers?

MLP mixer Linear-time State Space Models

https://arxiv.org/pdf/2105.01601.pdf
https://arxiv.org/ftp/arxiv/papers/2312/2312.00752.pdf

Criticism: rush for scaling, expensive

Images from this page

https://techengines.github.io/2021/05/24/deep-learning-ai-money-is-all-you-need/

Social Impact: Bias and Fairness

Stereotypes: generate more images of one gender/ethnic group

Example from this article

https://www.undp.org/serbia/blog/reproducing-inequality-how-ai-image-generators-show-biases-against-women-stem

Social Impact: Legal Issues

• “deepfaked” celebrities

See article here and here

• Use of data

https://www.businessinsider.com/obama-deepfake-video-insulting-trump-2018-4
https://apnews.com/article/nyt-new-york-times-openai-microsoft-6ea53a8ad3efa06ee4643b697df0ba57

Social impact: Carbon footprint

See article here and here

https://www.learningtree.com/blog/carbon-footprint-ai-deep-learning/
https://thenewstack.io/the-carbon-footprint-of-machine-learning/

Agenda

• About this class
• Deep Learning nowadays
• Programming
• Math

PyTorch: Tensors

• Installation: pip3 install torch
• The most basic object: torch.Tensor
• Very much like NumPy Arrays, but also supports:
• GPU acceleration (torch.Tensor.to(GPU_id))
• auto-grad (torch.Tensor.backward)

Why auto-grad?

• Deep nets are trained by minimizing a loss function with Stochastic
Gradient Descent (SGD)
• Deriving gradients by hand (will revisit this) is infeasible

PyTorch: Computation Graph

• z=torch.sum(x*y)
• When we call z.backward()
• Populates a field .grad
• Avoids deriving gradient by hand

x y

*

Σ

z

Example

ConvNet example from official tutorial page

https://pytorch.org/tutorials/beginner/introyt/introyt1_tutorial.html

How we implement

• Create a class inheriting torch.nn.Module
• implement at least two functions
• __init__(self, **kwargs):

defines all necessary model parameters,
variables
• forward(self, inputs: torch.Tensor):

creates computation graph

Example from official tutorial page

https://pytorch.org/tutorials/beginner/introyt/introyt1_tutorial.html

PyTorch: Loss and Optimizer

• Cross-entropy loss: ℓ(data label, predicted label)
• Off-the-shelf, inherits torch.nn.Module

• Gradient based optimizer
• Off-the-shelf

PyTorch: Training

Calls the forward() function

Auto-grad happens here
Update deep net’s parameters

Don’t forget this! Otherwise gradient
will be accumulated

Agenda

• About this class
• Deep Learning nowadays
• Programming
• Math

Linear algebra: vectors

• 𝑛 dimensional vector 𝒙 =
𝑥!
⋮
𝑥"

• If 𝒙 is real (common in deep learning), we can write 𝒙 ∈ ℝ"

• Inner (dot) product between n-dimensional vectors 𝒙 and 𝒚

𝒙 , 𝒚 ≡ 𝒙, 𝒚 =/
#$!

"

𝑥#𝑦#

• We call 𝒙 and 𝒚 orthogonal if 𝒙 , 𝒚 = 0

Linear algebra: vector norms, distances

• 𝐿% norm for 𝑝 ∈ ℝ, 𝑝 ≥ 1

𝒙 ! = (
"#$

%

𝑥"
!

$
!

• For 0 < 𝑝 < 1, the above is not a norm
• 𝐿* norm: number of non-zero elements in 𝒙
• Unit norm ball for p in 0.1 to 2
• 𝐿% distance between 𝒙!, 𝒙+ ∈ ℝ": 𝒙! − 𝒙+ %

• Cosine similarity: 𝒙!,𝒙"
𝒙!,𝒙!, 𝒙",𝒙"

(from wiki)

https://en.wikipedia.org/wiki/Lp_space

Linear algebra: matrices

• Matrix multiplication
𝑨 ∈ ℝ-×", 𝑩 ∈ ℝ"×%, then 𝑨𝑩 is 𝑚×𝑝:

(𝑨𝑩)#,0= /
1$!

"

𝑨#1𝑩10

• diagonal matrix: off-diagonal elements are all zero
• Identity matrix 𝑰: diagonal matrix with all 1’s on its diagonal
• Inverse of a square matrix 𝑨: 𝑨2! such that 𝑨2!𝑨 = 𝑨𝑨2! = 𝑰
• Transpose of a matrix: 𝑨3

Special Matrices

• Orthogonal matrix: a square matrix 𝑨 such that
𝑨3 = 𝑨2!

• Symmetric matrix: a square matrix 𝑨 such that
𝑨 = 𝑨3

• Toeplitz matrix: a square matrix where each diagonal is constant

Special Matrices

• Circulant matrix: a Toeplitz matrix, each row being a circulant shift of
the preceding

• Givens rotation matrix (we restrict to 2D): the operator that rotates a
2D vector counter clockwise by 𝜃

cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

Linear dependency

• Consider a set of vectors 𝒙!, … 𝒙" , where 𝒙# ∈ ℝ-

• Linearly independent: none of them can be written as the linear
combination of the rest
• Question: what if 𝑛 > 𝑚

• span(𝒙!, … 𝒙") is the set of all linear combinations of 𝒙#’s,

/
#$!

"

𝛼#𝒙# , ∀𝛼# ∈ ℝ

Subspace

• Consider 𝑛 < 𝑚, and Linearly independent 𝒙!, … , 𝒙"
• span(𝒙!, … 𝒙") defines a subspace of ℝ-

• 𝒙!, … , 𝒙" is a basis for the subspace
• Intrinsic dimension is 𝑛, e.g., 𝑚 = 3, 𝑛 = 2, 2D plane in ℝ4

𝒙!

𝒙"

Singular Value Decomposition (SVD)

• Any matrix 𝑨 ∈ ℝ-×" can be factorized into 𝑨 = 𝑼𝜮𝑽3

• 𝑼 ∈ ℝ-×-, 𝐕 ∈ ℝ"×" orthogonal
• 𝜮 ∈ ℝ-×" = diag(𝜎!,…,𝜎567(-,")), 𝜎# ≥ 0 in descending order
• Illustration

Compact form

Practical Meaning of SVD

• 𝑨 = 𝑼𝜮𝑽3=∑#$!
567(-,")𝜎#𝒖#𝒗#3, 𝜎# ≥ 0 in descending order

• Consider multiplying 𝑨 to a vector 𝒙 ∈ ℝ", 𝑨𝒙:
• 𝒙 along 𝒗# amplified the most, by 𝜎#
• 𝒗$: the orthogonal direction amplified the most, by 𝜎$
• 𝒗%: the orthogonal (to 𝒗# and 𝒗$) direction amplified the most, by 𝜎%
• …
• If 𝜎& = 0, then 𝒙 along 𝒗& is nulled

• How to get the basis from linearly dependent vectors?
• Collect them as columns of 𝑨, run SVD
• The 𝒖&’s such that 𝜎& > 0

Principal Component Analysis (PCA)
• For i=1, …, reduced_dimension:

• Find next orthogonal direction with biggest variance
• Project feature to this direction

• Easily solved by singular value decomposition (SVD)

SVD

samples

features

directions

projections

Norm

• 1-norm: 𝑨 ! = max
0
∑# 𝑨#,0

• ∞-norm: 𝑨 : = max
#
∑0 𝑨#,0

• Spectral norm 𝑨 + = 𝜎!

• Frobenius norm 𝑨 ; = ∑#,0 𝑨#,0
+ = ∑# 𝜎#+

• Nuclear-norm 𝑨 ∗ = ∑# 𝜎#
• Rank(𝑨): number of non-zero 𝜎#’s

Eigen Value Decomposition (EVD)

• Square matrix 𝑨 ∈ ℝ-×-, decompose 𝑨 = 𝑼𝚲𝑼2!

• 𝚲 = 𝑑𝑖𝑎𝑔 𝜆!, … , 𝜆- in descending order
• Symmetric 𝑨 (common for this class), then
• 𝑼 is orthogonal, and 𝑨 = 𝑼𝚲𝑼'

• When all 𝜆# ≥ 0
• we call 𝑨 positive semi definite (PSD), denoted as 𝑨 ≽ 0
• EVD coincides with SVD

Illustration from Chapter 2 of deep learning

https://www.deeplearningbook.org/contents/linear_algebra.html

Linear Least Squares

min
𝒙

𝑨𝒙 − 𝒃 +

• 𝑨 ∈ ℝ-×", 𝒙 ∈ ℝ", 𝑚 ≥ 𝑛
• 𝒙∗ = 𝑨=𝒃, where 𝑨= = (𝑨3𝑨)2!𝑨3 is pseudo-inverse
• What if 𝑚 < 𝑛?
• More than one solution
• Usually impose some regularizer on 𝒙, e.g., 𝐿# or 𝐿$ norm
• min

𝒙
𝑨𝒙 − 𝒃 $ + 𝜆 𝒙 $ ⇒ 𝒙∗ = (𝑨'𝑨 + 𝜆𝑰))#𝑨'𝒃 (ridge regression)

• min
𝒙

𝑨𝒙 − 𝒃 $ + 𝜆 𝒙 # (Lasso)

Gradient and Hessian

• Many learning problems aim at

min
𝒘
/
#

ℓ(𝒘, 𝒙#)

• Many solvers will involve gradient

∇ℓ 𝒘, 𝒙# =
𝜕ℓ
𝜕𝒘

• Sometimes we will also talk about 2nd order gradient (Hessian)

𝑯 =
𝜕+ℓ

𝜕𝒘𝜕𝒘3

Matrix Calculus

• Calculate derivative of function defined on matrices/vectors
• 𝑓:ℝ- ⟼ℝ:	∇𝑓 is	ℝ-

• 𝑓:ℝ-×" ⟼ℝ: ∇𝑓 is ℝ-×"

• 𝑓:ℝ- ⟼ℝ": ∇𝑓 is ℝ-×" (Jacobian)
• Hessian:
• we typically deal with 𝑓:ℝ* ⟼ℝ only
• 𝑚×𝑚 matrix

• I often check this wikipage

https://en.wikipedia.org/wiki/Matrix_calculus

Chain rule

• For an 𝐿-layer network, ℓ(𝒘, 𝒙) is a composite function, i.e.,
𝒙(") = 𝑓"(𝒘", 𝒙)
𝒙($) = 𝑓$(𝒘$, 𝒙("))

⋮
ℓ = 𝑓%(𝒘%, 𝒙(%&"))

• Chain rule and back-propagation:
𝜕ℓ
𝜕𝒙(')

=
𝜕ℓ

𝜕𝒙('(")
,
𝜕𝒙('(")

𝜕𝒙(')

𝜕ℓ
𝜕𝒘'

=
𝜕ℓ
𝜕𝒙(')

,
𝜕𝒙(')

𝜕𝒘'

𝒙

𝒙(!)

𝑓!(𝒘!, 𝒙)

⋮

𝑓%(𝒘% , 𝒙(%&!))

𝓵

Jacobian

Gradient Descent (GD)

For step 𝑠 = 0, 1, …
𝒘 𝑠 + 1 = 𝒘 𝑠 − 𝜂∇ℓ(𝒘(𝑠)),

till ∇ℓ(𝒘 𝑠) ≈ 0 (or max steps reached, or loss reduction is tiny)

Stochastic Gradient Descent (SGD)

• we want to min
𝒘
∑#$!? ℓ(𝒘, 𝒙#)

• If 𝑁 is big, Compute ∇ℓ(𝒘, 𝒙#) for all 𝑖’s can be costly
• So we sample a mini-batch of 𝑖’s each step
• Starting from 𝒘 0 , for step 𝑠 = 0, 1, …

𝒘 𝑠 + 1 = 𝒘 𝑠 − 𝜂∑#∈ℬ ∇ℓ 𝒘 𝑠 , 𝒙# ,
till stopping criteria met

• “noisy” steps

Illustration from this page

https://www.samvitjain.com/blog/gradient-descent/

Probability Distribution

• Discrete random variable
• Probability Mass Function (PMF): 𝑃(𝑋 = 𝑥!)
• 𝑃 𝑋 = 𝑥! ≥ 0 and ∑! 𝑃(𝑋 = 𝑥!) = 1

• Continuous random variable
• Probability Density Function (PDF): 𝑝(𝑥)
• 𝑝(𝑥) ≥ 0 and ∫" 𝑝(𝑥) = 1

• The above can be generalized to random vectors
• Cumulative Distribution Function (CDF) for real valued random variable

• 𝑃 𝑥 = Pr(𝑋 ≤ 𝑥)
• Continuous case: 𝑝 𝑥 = #$(")

#"

Expectation, Variance, Covariance

• Expectation 𝔼B~% 𝑓 𝑋 = ∫𝑓 𝑥 𝑝 𝑥 𝑑𝑥
• Variance 𝑉𝑎𝑟B~% 𝑓 𝑋 = 𝔼B~%[(𝑓 𝑋 − 𝔼B~% 𝑓 𝑋)+]
• Covariance

𝐶𝑜𝑣 𝑓 𝑋 , 𝑔 𝑌 = 𝔼[(𝑓 𝑋 − 𝔼 𝑓 𝑋)(𝑔 𝑌 − 𝔼[𝑔(𝑌)])]
• Covariance matrix of random vector 𝒙 ∈ ℝ"

𝐶𝑜𝑣(𝒙) #,0 = 𝐶𝑜𝑣(𝑥# , 𝑥0)
𝐶𝑜𝑣(𝒙)#,# = 𝑉𝑎𝑟(𝑥#)

(multivariate) Gaussian Distribution

• 𝒙~𝒩 𝝁, 𝜮 ∈ ℝ", where 𝜮 ≽ 𝟎

• 𝑝 𝒙 = !
(+D)#EFG 𝜮

exp − !
+
𝒙 − 𝝁 3𝜮2!(𝒙 − 𝝁)

• Example: 2D-spherical Gaussian
• 𝝁 = 0

0 , 𝜮 = 1 0
0 1

• Correlation coefficient
𝜌 =

𝜎#$
𝜎## D 𝜎$$

= 0

Plots from these slides

https://www.inf.ed.ac.uk/teaching/courses/asr/2018-19/asr03-hmmgmm-handout.pdf

(multivariate) Gaussian Distribution

• Example:
• 𝝁 = 0

0 , 𝜮 = 1 0
0 4

• 𝜌 = 0

Plots from these slides

https://www.inf.ed.ac.uk/teaching/courses/asr/2018-19/asr03-hmmgmm-handout.pdf

(multivariate) Gaussian Distribution

• Example
• 𝝁 = 0

0 , 𝜮 = 1 −1
−1 4

• 𝜌 = −0.5

• More generally, contour ellipsoid (centered at 𝝁) in ℝ"
• Let eigen decomposition 𝜮 = 𝑼𝚲𝑼'
• Axes along columns 𝑼&’s. Axis length related to 𝜆&’s 𝑼!

𝑼"
𝝁

Plots from these slides

https://www.inf.ed.ac.uk/teaching/courses/asr/2018-19/asr03-hmmgmm-handout.pdf

(multivariate) Gaussian Distribution

• How do we estimate the 𝝁, 𝜮 given data 𝒙#’s?
• Maximum Likelihood Estimator (MLE)

(z𝝁, {𝜮) = argmax
𝝁,𝚺

∑#$!? log 𝑝(𝒙#|𝝁, 𝜮)⟹

z𝝁 = !
?
∑#$!? 𝒙#,

{𝜮 =
1
𝑁
/
#$!

?

(𝒙#− z𝝁)(𝒙#−z𝝁)3

Conditional Probability

• 𝑃 𝑌 = 𝑦 𝑋 = 𝑥 = K(BL,MN)
K(B$L)

• “Lazy” expression: 𝑝 𝑦 𝑥 = %(L,N)
%(L)

• Bayes Rule

𝑝 𝑥 𝑦 =
𝑝 𝑥 𝑝(𝑦|𝑥)

𝑝(𝑦)
• Marginalize 𝑝 𝑥 = ∫𝑝 𝑥, 𝑦 𝑑𝑦
• Independence: 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝(𝑦)

Entropy

• Shannon Entropy: 𝐻 𝑋 = 𝔼)~+ − log 𝑝 𝑋
• sometimes denoted as 𝐻(𝑝)
• bits to encode a random variable, given its pdf

• Cross Entropy 𝐻 𝑝, 𝑞 = 𝔼)~+[− log 𝑞(𝑋)]
• Bits to encode a random variable, according to a different pdf, 𝑞(2)
• Need more bits than 𝐻(𝑝)

• KL divergence 𝐾𝐿(𝑝| 𝑞 = 𝔼,~+ log + ,
- ,

= 𝐻 𝑝, 𝑞 − 𝐻(𝑝)
• Asymmetric 𝐾𝐿(𝑝| 𝑞 ≠ 𝐾𝐿(𝑞| 𝑝
• In supervised learning, we often have 𝑝 as ground-truth label, and 𝑞 as model

prediction
• Why not the other way?

Mutual Information

• Joint entropy 𝐻 𝑋, 𝑌 = 𝔼L,N~%(L,N)[− log 𝑝(𝑥, 𝑦)]
• Conditional Entropy 𝐻 𝑌 𝑋 = 𝔼L,N~%(L,N)[− log 𝑝(𝑦|𝑥)]
• How much uncertainty left in 𝑌 given 𝑋

• 𝐼 𝑋; 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)
= 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

• 𝐼 𝑋; 𝑌 = 𝐾𝐿(𝑝(𝑋, 𝑌)||𝑝 𝑋 𝑝(𝑌))
• 𝐼 𝑋; 𝑌 = 0: 𝑋 and 𝑌 are independent

𝐻(𝑌)𝐻(𝑋)

𝐻(𝑋|𝑌) 𝐻(𝑌|𝑋)𝐼(𝑋; 𝑌)

more Math, and classical v.s. DL

Gaussian Mixture Model (GMM)

• Modeling
• multiple speakers (speaker identification)
• Pronunciations (speech recognition)
• Human faces (face identification)
• …

• latent variable 𝑐~𝑝(𝑐)
• Component pdf: 𝑝 𝒙 𝑐 =𝒩(𝒙; 𝝁O , 𝚺O)
• 𝑝 𝒙 = ∑O$!P 𝑝 𝑐 𝑝(𝒙|𝑐)

Pdf of a Gaussian mixture with 2 components

MLE for GMM

• Maximum Likelihood Estimator for {𝝁O , 𝚺O}’s
• Via Expectation-Maximization (EM) algorithm:
• Initialize {𝝁O(0), 𝚺O(0)} for 𝑐 = 1,…𝐶. Denoted as 𝜽(0)
• for step 𝑠 = 0,1, …
• E-step: estimate 𝑝 𝑐 𝒙&, 𝜽(𝑠) for all 𝑖’s, then get expected log-likelihood

M
&

𝔼:~<(:|𝒙!,𝜽(>)) log 𝑝(𝒙&, 𝑐|𝜽)

• M-step: 𝜽(𝑠 + 1) ← maximizer of the above

Simple application of EM: k-means

• Assume 𝜮 = 𝜎+𝑰 where 𝜎+ is some constant that we don’t care
• We only need to estimate cluster centers 𝝁O, for 𝑐 = 1,… , 𝐶
• Randomly initialize guessed 𝝁O(0) O$!

P .
• For step 𝑠 = 0,1, …
• E-step: calculate cluster assignment for each sample 𝒙&:

𝑝(𝑐|𝒙# , 𝝁O(𝑠) O$!
P)

We may simplify by assuming 1-hot assignment
• M-step: update centers 𝝁:(𝑠 + 1) :?#

@ based on the assignment

GMM v.s. DL

• GMM for speaker identification

Fit a GMM

Trained Independently
from GMM

Estimate 𝑝(𝑐|𝒙)

Illustration from this page

https://www.mathworks.com/help/audio/ug/speaker-identification-using-pitch-and-mfcc.html

GMM v.s. DL

• DL for speaker identification
• Jointly trained model and classifier

GMM vs DL

Table from this paper

So why DL approach outperforms?

https://www.mdpi.com/2076-3417/11/8/3603

