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ABSTRACT
A novel multi-scale dictionary based Bayesian reconstruction
algorithm is proposed for compressive X-ray imaging, which
encodes the material’s spectrum by Poisson measurements.
Inspired by recently developed compressive X-ray imaging
systems [1], this work aims to recover the material’s spec-
trum from the compressive coded image by leveraging a ref-
erence spectrum library. Instead of directly using the huge
and redundant library as a dictionary, which is cumbersome
in computation and difficult for selecting those active dic-
tionary atoms, a multi-scale tree structured dictionary is re-
fined from the spectrum library, and following this a Bayesian
reconstruction algorithm is developed. Experimental results
on real data demonstrate superior performance in comparison
with traditional methods.

Index Terms— Compressive sensing, multi-scale, dictio-
nary, poisson, X-ray imaging

1. INTRODUCTION

Dictionary based representations have demonstrated effec-
tiveness in signal and image recovery problems [2]. Recently,
multi-scale dictionary has received much attention due to
its better depiction of the data geometry [3] compared with
its single-scale counterpart [2]. Multi-scale representation
achieves stronger signal restoration ability [4], and has been
effectively applied to many machine learning tasks, includ-
ing classification [5], novelty detection [6] and topic mod-
elling [7].

A note on the notations before introducing our problem:
matrices and vectors are denoted as bold upper and lower case
letters, e.g., D is a matrix and θ is a vector. Scalars are de-
noted as plain letters, e.g., `, Z. In this paper, we introduce
multi-scale dictionary based representation into solving the
Poisson compressive sensing (CS) inverse problem. In a Pois-
son CS inverse problem, measurements y ∈ ZM+ are from a
Poisson distribution,

y ∼ Pois(Hf + µ), (1)

where H ∈ RM×N
+ characterizes the system. f ∈ RN+ is

the underlying signal (vectorized image) and µ is the “dark
current”. The task is to estimate f given y, H and µ. While
the maximum likelihood estimator [8] is effective, recently,

significant improvement has been achieved by exploring the
image’s nature, e.g., smoothness and sparsity [9, 10, 11].

The Poisson CS algorithm proposed in this paper is in-
spired by an X-ray machine—Coded Aperture Coherent Scat-
ter Spectral Imaging (CACSSI) [1, 12]. This machine allows
simultaneous measure of location and molecular signature of
a material under test. Thus scan time is significantly reduced
in comparison with traditional X-ray imaging systems. The
imaging mechanism in CACSSI is governed by the Bragg’s

law, q =
1

2d
=

E

hc
sin

δ

2
, where q is the momentum transfer,

d is the effective lattice spacing of the material, E is the en-
ergy of the X-ray, h is the Planck’s constant, c is the speed of
light in vacuum, and δ is the angle between the incident and
scatted X-ray. Different materials occupy different q values.
When an X-ray is projected on a material, it scatters at one
or several specific angles with specific energy. The angle and
energy information is recorded by spatially distributed energy
sensitive pixels. The resultant X-ray image at the detector is
modeled as Poisson distributed due to its limited energy.

To reconstruct f and estimate the spectrum, the point pro-
cess based recovery algorithms, e.g., Maximum Likelihood
Estimator (MLE) [8], Maximum Posterior with TV penalty
(MAP-TV) [13], have been shown effective [1, 14]. How-
ever, they can not well accommodate the uncertainty in back-
ground noise and can only give a point estimation. Herein,
we adopt a Bayesian framework which simultaneously esti-
mates the background noise µ and the signal f . And partic-
ularly, significant improvement in reconstruction is achieved
by leveraging a multi-scale dictionary.

2. PROBLEM STATEMENT

In Eq. (1), the sensing matrix H of the X-ray machine can
be estimated in advance by forward model. The underlying
signal is considered as a two dimensional image [1], with
one dimension z = 1, . . . Z representing the spatial loca-
tion (discretized grids), and the other dimension signifying
the momentum transfer, q = 1, . . . , Q. Specifically, sup-
pose that a material with spectrum s ∈ RQ+ occupies a subset
Ω ⊂ {1, 2, . . . , Z} of these spatial grids. Then the input sig-
nal induced by this material is an image F ∈ RQ×Z

+ , whose
z-th column is s if z ∈ Ω and zero otherwise. And the f in
equation (1) can be expressed as f = vec(F), stacking F’s
columns on one another.



By cascading all the reference spectra in the library, we
can build a dictionary D = [d1, . . . ,dR] ∈ RQ×R

+ , where R
is the total number of spectra. And we express F as a linear
combination of the atoms in D, i.e.,

F = DΘ, (2)
where Θ ∈ RR×Z

+ linearly combines these dictionary atoms
at each spatial grid. Denoting θ = vec(Θ) ∈ RRZ and com-
bining Eq (1) and (2), we can express the model as

y ∼ Pois(H(IZ ⊗D)θ + µ). (3)

The problem is to estimate the F given the H and imperfect
measure of µ, which boils down to an estimate of θ. Ob-
taining F, we can further estimate the spectrum by simply
extracting the most intense column in F.

As aforementioned, directly using this D is computation-
ally expensive and difficult for selecting active atoms. Hence,
we propose an approach to better leverage the dictionary and
improve spectrum recovery performance. While our primary
focus is on X-ray signal recovery, our work also sheds light on
the widely existing signal recovery problems in photon lim-
ited imaging systems.

3. ALGORITHM

Rather than simply cascading all the reference spectra, we
construct a multi-scale dictionary to refine the atoms and re-
duce the redundancy. Following this, we reconstruct the sig-
nal from the multi-scale dictionary. The flow-chart of the full
algorithm is depicted in figure 1.
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Fig. 1: Flow-chart of our approach

3.1. Construct multi-scale dictionary

We perform a nested partition of the over-complete dictionary
to group similar spectra. Various methods can be employed
for the partition, e.g., iterative k-means [15], graph-cut [16],

etc. Here we use the iterative k-means, where the dictionary
atoms are partitioned into k subsets and each subset is fur-
ther recursively partitioned. This results in a tree structure
where each node T (`, n`) is associated with a set of spec-
tra, P(`, n`). Here ` = 0, . . . , L denotes the level of the
node in the tree, with ` = 0 implying the root node, and
n` = 1, . . . , N` indices the node in the `-th level. We then
prune redundancy from the P(`, n`) to get a refined dictio-
nary D(`, n`). As summarized in algorithm 1, Non-negative
Matrix Factorization (NMF) [17] is applied to each P(`, n`).
The rank, R(`, n`), is chosen such that the product of two
factor matrices is close enough to P(`, n`). Notice that each
node in the tree is a dictionary (a matrix). It is thus natural
to ask the question, how to select the “best” node (dictionary)
for representation. And we will present a strategy in the next
section.

Algorithm 1 Construct Multi-scale Dictionary
Input: Reference spectrum library D, NMF error tolerance ε
Output: Tree {T (`, n`)} with refined dictionary {D(`, n`)}

1: Partition the atoms in D using iterative k-means. Tree
node T (`, n`) is associated with spectra P(`, n`)

2: for all ` = 0, . . . , L, n` = 1, . . . , N` do
3: /*factorize each P(`, n`) with appropriate rank*/
4: rank R(`, n`)← 0
5: factors B← 0, W← 0
6: while ‖P(`, n`)−BW‖2F /‖P(`, n`)‖2F > ε do
7: R(`, n`)← R(`, n`) + 1
8: Perform rank-R(`, n`) NMF of P(`, n`) and assign

the two factors to B, W.
9: end while

10: D(`, n`) ∈ RQ×R(`,n`)
+ ← column-normalized B

11: end for

3.2. Bayesian Reconstruction of F using {D(`, n`)}

Given the constructed multi-scale dictionary {D(`, n`)} and
measurements y, we need to find the “best” node for recon-
struction. Since a dictionary at a deeper level is supposed to
be a finer representation of the to-be reconstructed spectrum,
we seek the “best” node by selecting a path from root to leaf
in {T (`, n`)}. Specifically, suppose we have arrived at node
T (` − 1, n`−1), we then recover F using each dictionary as-
sociated with each child of T (`− 1, n`−1). We select the one
with the smallest cost as the next node to land on. At this
point, it is necessary to study how to reconstruct F given a
particular dictiontary.

3.2.1. A Bayesian Model

We consider how to estimate Θ(`, n`) ∈ RR(`,n`)×Z
+ (there-

fore the F), given a dictionary D(`, n`). Denote θ(`, n`) =
vec [Θ(`, n`)] ∈ RZR(`,n`) as the vectorized Θ(`, n`). De-
fine

A , H(IZ ⊗D(`, n`)) ∈ RM×ZR(`,n`). (4)



Referring to the model (3), we have

y ∼ Pois(Aθ(`, n`) + µ). (5)

We are thus directed to infer θ(`, n`). We impose the follow-
ing conjugate prior:

θ(`, n`) ∼ Gamma(αθ, βθ)
µ ∼ Gamma(βµ · µ̂, βµ)

(6)

where µ̂ is a measure of the “dark current” by placing no
material in the X-ray body. Note that µ̂ is not the perfect
knowledge of µ. This fact would be more conveniently
accounted by a bayesian instead of an optimization based
approach. Also, Gamma is the conjugate prior of Poisson
thus analytical form of posterior can be derived. And finally,
shrinkage effect (sparsity) on θ(`, n`) can be easily imposed
by setting the shape parameter αθ ≤ 1.

3.2.2. Bayesian Inference

Now we derive the inference in detail by following the Pois-
son Factor Analysis (PFA) [18] steps. We first introduce latent
variables

ym,n ∼ Pois (Am,nθn(`, n`)) ,∀ 1 ≤ n ≤ ZR(`, n`)
ym,ZR(`,n`)+1 ∼ Pois(µm), ∀ 1 ≤ m ≤M,

(7)
where m,n are the row and column indices of A. Assuming
independency among the ym,n’s, the m-th measurement ym
can be generated as

ym =

ZR(`,n`)+1∑
n=1

ym,n, (8)

due to the additivity of independent Poisson variables. Lemma
4.1. in [18] states that

(ym,1, . . . ,ym,ZR(`,n`)+1)|ym
∼ Mult(ym; ξm,1, . . . , ξm,ZR(`,n`)+1),

where

ξm,n =
Am,nθn(`, n`)∑N

n=1 Am,nθn(`, n`) + µm
, ∀ 1 ≤ n ≤ ZR(`, n`)

and
ξm,ZR(`,n`)+1 =

µm∑N
n=1 Am,nθn(`, n`) + µm

(9)
We are thus able to sample the latent ym,n’s from a multi-
nomial distribution given the y and the current estimate of
θ(`, n`) and µ. With the ym,n’s obtained, the posterior of
θn(`, n`) can be derived as

p(θn(`, n`)|−) ∝
M∏
m=1

Pois(ym,n; Am,nθn(`, n`))

×Gamma(θn(`, n`);αθ, βθ)

= Gamma

(
αθ +

M∑
m=1

ym,n, βθ +

M∑
m=1

Am,n

)
(10)

Algorithm 2 Infer θ(`, n`)

Input: Dictionary D(`, n`) at tree node T (`, n`), y, H,
“dark current” measurements µ̂, parameters αθ, βθ, βµ

Output: Dictionary atom weights θ(`, n`)
1: Compute A by equation (4)
2: Initialize θ(`, n`), µ by equation (6)
3: for loop=1, . . . ,MAX LOOPS do
4: Compute ξm,n by equation (9)

/*Assign the mean of the posteriors to the variables*/
5: ym,n ← ξm,n · ym

6: θn(`, n`)←

(
αθ +

M∑
m=1

ym,n

)
/

(
βθ +

M∑
m=1

Am,n

)
7: µm ← (αµ + ym,N+1) / (βµ + 1)
8: end for

And similarly, the posterior of µm is

p(µm|−) = Gamma
(
αµ + ym,ZR(`,n`)+1, βµ + 1

)
. (11)

Full conjugation of the parameters allows us to perform the
efficient mean-field variational Bayes [19] inference, where
the mean values of the posterior distributions in (9)-(11) are
used in the update equations. The inference is summarized in
Algorithm 2. Note that the computational and memory cost
in each loop in algorithm 2 depends on the dictionary size
linearly. Thus in general, using the refined dictionary will be
more efficient than using an over-complete one.

3.2.3. Path selection guided by reducing risk

We start from the root node, and select a path leading to
the “best” node. Suppose we have arrived at node T (`, n`) at

Algorithm 3 Reconstruct spectrum using tree {T (`, n`)}
Input: {D(`, n`)}, y, H, µ̂, parameters αθ, βθ, βµ
Output: Reconstructed F̂

1: Reconstruct using root dictionary D(0, 1) by algorithm 2.
Get risk C[0] = C(0, 1) by equation (12)

2: `← 0, n∗` ← 1
3: while T (`, n∗` ) is not tree leaf do
4: For each child of T (`, n∗` ), get its θ(`+ 1, n`+1) using

algorithm 2, compute its risk by equation (12)
5: Take the child with the smallest risk, assign this risk to

C[`+ 1], index to n∗`+1

6: if C[`+ 1] > C[`] then
7: break
8: else
9: `← `+ 1

10: end if
11: end while
12: F̂← D(`, n∗` )Θ(`, n∗` )



level `, we then examine the cost of reconstructing the spec-
trum via algorithm 2 using each child of T (`, n`). The `+1-th
node to land on will be the one with the smallest risk. We stop
delving deeper if the cost of using any of T (`, n`)’s children
is larger than that of itself. A cost function is defined as the
negative log-likelihood with certain penalty (e.g.,TV, `1) on
the reconstructed spectrum ŝ

C(`, n`) , − log Pois(y; Aθ(`, n`)) + λpen(ŝ) (12)

The entire reconstruction framework is summarized in algo-
rithm 3.

4. EXPERIMENTS

We test the performance of our algorithm on the real data
collected by CACSSI. The comparators are MLE [8], MAP-
TV [13], and reconstruction using the entire spectrum library
as dictionary (fullDict), which is an over-complete one since
Q = 101 and R = 166. Due to the limit of space, we only
present two representative materials, aluminum and water.

Typically, the spectra of solids (e.g., aluminum) are spiky,
whereas liquids’ spectra are smooth and continuous. When
partitioning these two categories of spectra, their difference
might be difficult to capture by a commonly used distance
metric, e.g., Euclidean distance. Therefore, merely using k-
means with Euclidean distance may not partition the spectrum
library appropriately. So we first inspect the wavelet coeffi-
cients of all spectra. Those tend to occupy high frequency
bands are spiky ones, otherwise are smooth ones. We sep-
arate smooth ones from spiky ones. This forms a first level
bi-partition of the entire spectrum library. Then we further
partition these two subsets recursively by iterative 2-means as
in algorithm 1, where the NMF error tolerance ε is set to 0.05.
Finally, we get a multi-scale dictionary, whose root node has
26 atoms. The two children of root represent liquid and solid.
And they are with 2 and 23 atoms respectively. The smaller
size of the liquids’ dictionary is due to the fact that liquids’
spectra well resemble each other.

The parameters for reconstruction are αθ = 0.01, βθ = 1,
βµ = 1 and MAX LOOPS=100. In calculating the risk of
equation (12), we choose TV penalty and λ = 2 × 104. For
the comparator methods, MAP-TV is with a TV penalty of
3000. FullDict is with βµ = 1, βθ = 1 and αθ is set to a
smaller value, 10−5, to shrink more on θ. For each algorithm,
the spectrum is estimated by taking the strongest column in F̂.
Exemplar F̂ from aluminum measurements are shown in fig-
ure 2. The aluminum is placed at spatial grid 267. In figure 2,
all methods are able to locate the material. But notice that by
using multi-scale dictionary, very clean spikes at column 267
are produced, and there is no spurious response at the lower
right conner compared with MAP-TV and MLE.

To illustrate the progress of traversing from coarse to fine,
we demonstrate the reconstructed water spectrum at each
level in figure 3. This traversal stops at level 3. We observe

that as we delving deeper along a selected path, the recon-
structed spectrum gradually approaches the reference till it is
close enough and the path seeking stops.
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Fig. 2: Reconstructed F̂ by four methods. The material is aluminum
and placed at grid 267.
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Fig. 3: Reconstructed water spectrum at each level
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Fig. 4: Reconstructed spectra: compare all methods

Figure 4 compares the finally (upon stopping delving) re-
constructed spectrum with the comparators. Note that in fig-
ure 4a, the reconstructed spectrum by using multi-scale dic-
tionary perfectly overlaps with reference. And for both ma-
terials, multi-scale dictionary yields estimates much closer to
the references. This is particularly helpful for successive tasks
like classification and threatening material identification.
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