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ABSTRACT
The Poisson Factor Analysis (PFA) is applied to recover sig-
nals from a Poisson compressive sensing system. Motivated
by the recently developed compressive X-ray imaging system,
Coded Aperture Coherent Scatter Spectral Imaging (CAC-
SSI) [1], we propose a new Bayesian reconstruction algo-
rithm. The proposed Poisson-Gamma (PG) approach uses
multiple measurements to refine our knowledge on both sens-
ing matrix and background noise to overcome the uncertain-
ties and inaccuracy of the hardware system. Therefore, a col-
laborative compressive X-ray image reconstruction algorithm
is proposed under a Bayesian framework. Experimental re-
sults on real data show competitive performance in compari-
son with point estimation based methods.

Index Terms— Poisson inversion, sensing matrix, com-
pressive sensing, X-ray imaging, Bayesian inference

1. INTRODUCTION

Photon (energy) limited imaging systems collect Poisson dis-
tributed measurements, whose inverse problem has received
lots of attention recently [2, 3, 4, 5]. In a Poisson imaging
system, the measurements are

y ∼ Pois(Hf + µ), (1)

where H ∈ RM×N+ is the sensing matrix and µ ∈ RM+ is the
“dark current” (background noise). A Poisson inverse prob-
lem is the task of recovering f ∈ RN+ given y ∈ ZM+ , H and
µ. While the Maximum Likelihood Estimator (MLE) [6] has
been shown effective in solving Poisson inverse problems [7],
incorporating prior information of the scene, e.g., sparsity,
structures, significantly improves the recovery performance.
For example, [8] learns a data dependent dictionary and de-
noises images based on dictionary representation. [9, 10] as-
sume the piece-wise smooth nature of images and impose TV
semi-norm regularization. [11] further exploits the smooth-
ness of images and proposes the Hessian-Schatten norm reg-
ularizor. In the Poisson inverse regime, those problems as-
sociated with compressive Poisson imaging system are quite
new and appealing. [12] is among the very few works that
give the performance bounds on compressive Poisson inverse
problem. In this work, we are interested in the signal recon-
struction problem based on a compressive Poisson imaging
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Here the delta function enforces Bragg’s law, we have made the small angle approximation
that q ⇠ x/z (which is valid for the energies and detector locations considered here), DW is
the differential solid angle subtended by the detector, and T (E,x,z) = exp[�µ(E,x,z)] and µ
are the position- and energy-dependent transmission function and linear attention coefficient of
the object, respectively. We note that this model considers coherent scatter only and does not
take into account incoherent (Compton) scatter. This approximation is valid for energy-resolved
measurements taken at small angles, where the ratio of measured Compton to coherent x-rays
is small owing to the peaked nature of coherent scatter in both energy and angle. Multiple
scatter, which is also unmodeled but tends to be small and fairly constant, is accounted for
approximately through the consideration of a noise term (see Sec. 2.2).
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Fig. 1. a) Schematic and b) photograph of the CACSSI setup, including the x-ray source,
collimators, coded aperture, object space, and detector. c) X-ray transmission image of the
coded aperture.

The function t(x) in Eq. (3) represents the coded aperture transmission pattern in the plane of
the code (i.e., at z = zm), which is magnified by a factor of z/(z� zm) upon propagation to the
detector plane. This position-dependent magnification disambiguates the angular origin of the
scatter and yields range information about the object, thereby allowing us to recover both z and
q independently from a single measurement. To gain insight into the role of the code, one can
alternatively view the coded aperture as allowing simultaneous measurement of the scatter in
two distinct planes. This results in a measurement of the scatter radiance with a standard irradi-
ance detector and, in the case of coherent scatter, yields range information through Bragg’s law.
As discussed in Ref. [14], such a mask should be orthogonal in scale so that objects located at
different range locations yield optimally-distinguishable code projections. In the following, we
choose a periodic binary code t(x) = [1+ sign(sin[ux])]/2 (see Fig. 1 c) for ease of fabrication,
where u is the frequency of the code pattern.

Fig. 1: CACSSI setup: a) Schematic and b)Photograph of
the CACSSI setup c) X-ray transmission image of the coded
aperture [1]

system, Coded Aperture Coherent Scatter Spectral Imaging
(CACSSI) [1].

2. HARDWARE AND EXISTING APPROACH

An illustration of the CACSSI [1] is shown in figure 1. By
placing a coded aperture in the path of the scattered X-rays,
CACSSI enhances the throughput of the system without com-
prising the imaging performance. CACSSI allows one to
measure quickly both the location and molecular signature
of a target object placed in the path of a pencil beam. It is
faster than systems that requires multiple times of measure-
ments [13], and is more compact (compressive) compared
with systems that uses an array of detectors [7, 14].

The imaging mechanism of CACSSI is the fact that X-
ray scatters at different angles and energies after hitting dif-
ferent materials. This fact is described by the Bragg’s law,

q =
1
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, where q is the momentum transfer. d

is the effective lattice spacing of the material. E is the X-ray
energy. h is the Planck constant. c is the light speed and δ is
the angle between the incident and scattered X-ray. Resort-
ing to forward model, the imaging mechanism boils down to
equation (1), where the sensing matrix H can be estimated by
the forward model given CACSSI’s physical parameters. The
problem we are interested in is the imperfect knowledge of H
during the spectrum recovery step. Namely, the H estimated



by forward model is not exactly the truly underlying sensing
matrix. While our motivation and experiments are based on
CACSSI, we would like to point out that this problem does not
lose generality in face of other real world imaging systems.

Herein, we consider that the underlying signal f is a two
dimensional image as in [1]. More specifically, suppose the
space in the X-ray body is quantized into Z spatial grids,
and the material with spectral signature s ∈ RQ+ occupies
a subset Ω ⊂ {1, 2, . . . , Z} of these grids. Then the in-
put signal induced by this material is an image I ∈ RQ×Z+ ,
whose z-th column is s if z ∈ Ω and zero otherwise. De-
note f = vec(I) ∈ RN+ as the resultant vector by stacking
I’s columns on one another. Then the measurements at the
detector can be modeled by equation (1).

In [7], the authors take an optimization based approach.
They assume that their knowledge of the sensing matrix, Ĥ,
is perfect. To estimate µ, they first measure the background
by placing no material in the X-ray body, which results in
measurements µ̂ ∼ Pois(µ). Then they estimate µ by the
Maximum Posterior estimator with Total Variation Penalty
(MAP-TV),

µ̄ = arg min
µ

(− log Pois(µ̂|µ) + λ‖µ‖TV) , (2)

where Pois(µ̂|µ) is understood as the Poisson probability
density at µ̂ given the rate parameter µ.

Substituting the µ in equation (1) with µ̄, again using
MAP-TV estimator, they get the estimate of signal,

fMAP = arg min
f

(
− log Pois

(
y|Ĥf + µ̄

)
+ τ‖f‖TV

)

(3)
An MLE estimator, in contrast, sets τ = 0 in equation (3).

However, there are a few problems with the aforemen-
tioned approach. First, the knowledge of the sensing matrix,
Ĥ, is an estimate by the forward model and in general not ac-
curate. Second, for different materials at different locations,
the environment in the X-ray body changes, and background
noise varies accordingly. In fact, for the k-th sample put in
the X-ray body, we have

yk ∼ Pois(Hfk + µk), k = 1, . . . ,K (4)

Before proceeding to our method, we define the notations
here. Denote F =

[
f1, . . . , fK

]
∈ RN×K+ as the concatena-

tion of K input signals induced by K materials. Similarly,
Y =

[
y1, . . . ,yK

]
∈ ZM×K+ and U =

[
µ1, . . . ,µK

]
∈

RM×K+ . A more compact form of equation (4) is

Y ∼ Pois(HF + U) (5)

3. PROPOSED APPROACH

3.1. Poisson-Gamma Model

Since a piece of material typically occupies a small part of
the entire space, it is thus reasonable to assume that the fk’s

are sparse. For those sparse nonnegative variables, a natural
idea is to impose Gamma distribution as its prior. Gamma
is the conjugate prior of Poisson, thus analytical form of the
posterior is available. Also, it is easy to encourage sparseness
by setting the shape parameter of Gamma no bigger than 1.

We thus impose the following model

Fn,k ∼ Gamma(αf , βf )

Hm,n ∼ Gamma(βh · Ĥm,n, βh)
Um,k ∼ Gamma(βµ · µ̂m, βµ)

Ym,k ∼ Pois

(
N∑

n=1

Hm,nFn,k + Um,k

) (6)

Notice that according to the second and third equation of the
above model, the mean of the priors on H and µk equals Ĥ
and µ̂. Thus, pre-computed sensing matrix and pre-measured
background are utilized.

3.2. Inference

The inference follows the Poisson Factor Analysis (PFA) [15].
To start, it is necessary to introduce the latent variables that
composes Ym,k.
1. Latent variables Y

(n)
m,k

Define

Y
(n)
m,k ∼ Pois(Hm,nFn,k), n = 1, . . . , N

Y
(N+1)
m,k ∼ Pois(Um,k)

(7)

Assuming the independency among the Y
(n)
m,k’s, and due to

the additivity of independent poisson variables, we have

Ym,k =

N+1∑

n=1

Y
(n)
m,k (8)

To estimate F, it is necessary to sample each latent variable
Y

(n)
m,k. The following lemma states that given Ym,k, Y

(n)
m,k

can be sampled from a multinomial distribution.

Lemma 1. [15] Let independent variables x1, . . . , xn be
drawn from Poisson distribution with rate parameters λi, i =

1, . . . , n and x =

n∑

i=1

xi. Then the conditional distribution of

(x1, . . . , xn) given x is

(x1, . . . , xn)|x ∼ Mult
(
x;

λ1∑n
i=1 λi

, . . . ,
λn∑n
i=1 λi

)
(9)

Here we omit the proof, which is straightforward by ap-
plying the Bayesian rule.



Applying Lemma 1, we can sample the latent variables by

(Y
(1)
m,k, . . . ,Y

(N)
m,k,Y

(N+1)
m,k )|Ym,k ∼

Mult
(
Ym,k; ξ

(1)
m,k, . . . , ξ

(N)
m,k, ξ

(N+1)
m,k

)

where

ξ
(n)
m,k =

Hm,nFn,k∑N
n=1 Hm,nFn,k + Um,k

, n = 1, . . . , N

and

ξ
(N+1)
m,k =

Um,k∑N
n=1 Hm,nFn,k + Um,k

(10)
2. Infer Fn,k

Obtaining the Y
(n)
m,k’s, we are able to derive a closed form

posterior of Fn,k, n = 1, . . . , N .

p(Fn,k|−) ∝
M∏

m=1

Pois(Y(n)
m,k|Hm,nFn,k)

×Gamma(Fn,k|αf , βf )

= Gamma

(
αf +

M∑

m=1

Y
(n)
m,k, βf +

M∑

m=1

Hm,n

)

(11)
2. Infer Um,k

Similar to equation (11), the posterior of Um,k is

p(Um,k|−) ∝ Pois
(
Y

(N+1)
m,k |Um,k

)

×Gamma(Um,k|βµ · µ̂m, βµ)

= Gamma
(
βµ · µ̂m + Y

(N+1)
m,k , βµ + 1

)

(12)
3. Infer Hm,n

The posterior for Hm,n can be derived as

p(Hm,n|−) =

K∏

k=1

Pois
(
Y

(n)
m,k|Hm,nFn,k

)
×

Gamma(Hm,n|βh · Ĥm,n, βh)

= Gamma

(
βh · Ĥm,n +

K∑

k=1

Y
(n)
m,k,

βh +

K∑

k=1

Fn,k

)

(13)
Closed-from posterior distributions in (10)-(13) provide fast

MCMC (Markov Chain Monte Carlo) inference and the vari-
ational Bayesian (VB) [16] inference. For the running time
consideration, we adopt the mean-field VB inference here. A
VB approach attempts to approximate the posterior distribu-
tion by a simpler distribution, p(Θ|Y) ≈ q(Θ), where Y
is the observed data matrix and Θ is the set of independent
latent variables in the model [16]. VB assumes a complete
factorization across latent variables, q(Θ) =

∏

i

qi(Θi). We

define Θ = {F,H,U} for the purpose of this work. Solving
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Fig. 2: Estimated input image

for the optimal distribution q?(Θ) that minimizes the distance
between p and q effectively estimates the conditional poste-
rior distribution p(Θ|Y). Commonly used distance metric
between the two distribution function is the Kullback-Leibler
(KL) divergence [17]. We write the KL-divergence of p from
q as follows:

KL(q‖p) =

∫

Θ

q(Θ) ln
q(Θ)

p(Θ|Y)
dΘ, (14)

which can be simplified to

ln p(Y) = KL(q‖p) + L(q),

L(q) = −
∫

Θ

q(Θ) ln
q(Θ)

p(Θ,Y)
dΘ.

(15)



Now, it is easy to notice that ln p(Y) is fixed with respect to
the variations in q(Θ). Therefore, maximizing the Evidence
Lower Bound (ELBO), L(q), is equivalent to minimizing the
KL-divergence between the two distributions. This minimal
distance occurs when

ln q?(Θ) = E[ln p(Y,Θ)] + const. (16)

Assuming a complete factorization cross the latent variables,
q(Θ) =

∏

i

qi(Θi), each parameter in a variational Bayes

model is independently updated according to

q?j (Θj) ∝ exp{Ei 6=j [ln p(Y,Θ)]}. (17)

By applying the update rule in [16], equation (17) associated
with (10)-(13) gives the inference in Algorithm 1.

Algorithm 1 Poisson-Gamma Inference with an updated H

Input: Ĥ, background measurement µ̂, measurements Y
Output: Signal estimates F, background estimates U and

updated H
1: for loop=1,. . . ,MAX LOOPS do
2: Compute ξ(n)m,k as in equation (10)
3: Estimate latent variables

Y
(n)
m,k ← Ym,k · ξ(n)m,k (18)

4: Estimate Fn,k

Fn,k ←
(
αf +

M∑

m=1

Y
(n)
m,k

)
/

(
βf +

M∑

m=1

Hm,n

)

(19)
5: Estimate Um,k

Um,k ←
(
βµ · µ̂m + Y

(N+1)
m,k

)
/ (βµ + 1) (20)

6: Estimate Hm,n

Hm,n ←
(
βh · Ĥm,n +

K∑

k=1

Y
(n)
m,k

)
/

(
βh +

K∑

k=1

Fn,k

)

(21)
7: end for

4. EXPERIMENTS

We test our algorithm on the 25 measurements (i.e., K = 25)
collected by CACSSI. The comparator algorithms are MLE
and MAP-TV, both of them have been shown effective
for spectrum recovery from CACSSI measurements [7, 1].
We also demonstrate the results with fixed H, i.e., remov-
ing step 6 in algorithm 1. Due to the limited space, we
demonstrate several representative materials. The parame-
ter settings are αf = 1, βf = 0.1, βµ = 1, βh = 1 and
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Fig. 3: Estimated spectrums

MAX LOOPS= 20. For MAP-TV, the TV regularizer has a
values of 3000.

Remember that the input signal f is an image. We demon-
strate the image induced by a piece of teflon put at grid 252.
An ideal recovery would yield an image that only has one
non-zero column, corresponding to the 252-th spatial grid, as
shown in 2a. Figure 2 (b) through (e) are the recovered im-
ages by all methods. All of them are able to correctly locate
the material. Then we extract the strongest column in these
images and normalize it to compare with the reference spec-
trum. Figure 3 shows the extracted spectrums for three repre-
sentative materials. MLE yields very jagged estimate of the
spectrums whereas MAP-TV tends to over-smooth the peaks
(see the highlighted region of figure 3b). In all cases, the two
Poisson-Gamma model based approaches are very competi-
tive. And with refined sensing matrix, the estimated spectrum
is even closer to the reference.

5. CONCLUSION

We propose a collaborative compressive X-ray image recon-
struction algorithm based on the Poisson-Gamma Bayesian
framework. By refining the sensing matrix and the back-
ground noise through joint inversion of multiple measure-
ments, the uncertainties of noise and sensing matrix intro-
duced by the hardware are weakened. Experimental results
on real data demonstrate the superior performance of the
proposed approach.
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