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ABSTRACT

This paper introduces a new ESPRIT-based algorithm to esti-
mate the direction-of-arrival of an arbitrary degree polynomial-
phase signal with a single acoustic vector-sensor. The
proposed time-invariant ESPRIT algorithm is based on a
matrix-pencil pair derived from the time-delayed data-sets
collected by a single acoustic vector-sensor. This approach
requires neither a prior knowledge of the polynomial-phase
signal’s coefficients nor a prior knowledge of the polynomial-
phase signal’s frequency-spectrum. Furthermore, a pre-
processing technique is proposed to incorporate the single-
forgetting-factor algorithm and multiple-forgetting-factor
adaptive tracking algorithm to track a polynomial-phase sig-
nal using one acoustic vector sensor. Simulation results ver-
ify the efficacy of the proposed direction finding and source
tracking algorithms.

Index Terms— Acoustic signal processing, direction of
arrival estimation, eigenvalues and eigenfunctions, polynomi-
al approximation, sonar.

1. INTRODUCTION

Direction finding with acoustic vector sensors has attracted
much attention in recent years [1–14] since the acoustic vector
sensor outperforms the conventional pressure sensor [1, 2, 8].
An acoustic vector sensor comprises three orthogonal veloc-
ity sensors, and a pressure sensor, which are collocated at a
point geometry in space. The acoustic vector sensor can thus
measure both pressure and particle velocity of the acoustic
field at a point in space; whereas a traditional pressure sensor
can only extract the pressure information. The response of
an acoustic vector sensor to a far-field unity power incident
acoustic wave can be characterized by [1]:

a
def
=


ux(α, β)
uy(α, β)
uz(α)

1

 def
=


sinα cosβ
sinα sinβ

cosα
1

 , (1)

where α ∈ [0, π], β ∈ [0, 2π) are the elevation-angle and
azimuth-angle of the source, and ux,uy,uz symbolize the
three Cartesian components of u along each axis in the Carte-
sian coordinate system, respectively. Many advantages are of-
fered by the acoustic vector sensor [9]: a) The array-manifold

is independent of the source’s frequency spectrum. b) The
array-manifold is less sensitive to the distance of the source.
However, overlooked in the literature is how to estimate the
direction-of-arrival of a polynomial-phase signal with an ar-
bitrary degree.

Polynomial-phase signal (PPS) is a model used in a vari-
ety of applications. For example: radar, sonar, and commu-
nication systems use continuous-phase modulation where the
amplitude is constant and the phase is a continuous function
of time [15]. This function on a closed interval can be u-
niformly approximated by polynomials from the Weierstrass
theorem [16]. The phase of the signal above can then be mod-
eled as a finite-order polynomial within a finite-duration time-
interval. A unity power polynomial-phase signal can be mod-
eled in continuous time as:

s(t) = exp
{
j
(
b0 + b1t+ b2t

2 + · · ·+ bqt
q
)}
, (2)

where b1, · · · , bq are the polynomial coefficients associat-
ed with the corresponding orders, q is the degree of the
polynomial-phase signal, and the initial phase is b0. When
q = 2, the polynomial-phase signal is known as an LFM (lin-
ear frequency modulated) signal [17]. The polynomial-phase
signal has received considerable attention in the literature
[15, 18–23].

2. DIRECTION FINDING
Consider a polynomial-phase signal impinging upon an a-
coustic vector sensor. The collected 4× 1 data vector at time
t equals:

z(t) = as(t) + n(t), (3)

where n(t) symbolizes the additive noise at the acoustic vec-
tor sensor, s(t) is the polynomial-phase signal as in (2), and
a is the steering vector of the signal as in (1). In this work,
n(t) is modeled as zero mean, complex Gaussian distribut-
ed, and with a covariance of a 4 × 4 diagonal matrix K0 =
diag[σ2, σ2, σ2, σ2], where σ2 denotes the variance of noise
collected by each constituent antenna. (This proposed algo-
rithm can also be used in the three-component acoustic vector
sensor as discussed in [6]) From (3):

z(t) = as(t) + n(t) = [ux,uy,uz, 1]
T
s(t) + n(t), (4)

where T denotes the transposition. In order to simplify the
exposition, we consider the noiseless case in the following
derivation. Consider a q-order polynomial-phase signal, and



let z(q)(t) be the measured data of the acoustic vector sensor
for this signal. In the noiseless case:

z(q)(t) = [ux, uy, uz, 1]
T
s(t). (5)

z(q)(t) is a 4×1 vector, and let zi,q(t) be the ith row of z(q)(t),
∀i = 1, 2, 3, 4. With δT denoting a constant time-delay, when
q ≥ 2, perform the following computation:
1) For any δT 6= 0,

z(q−1)(t)
def
=

4∑
i=1

z(q)(t)z
∗
i,q(t+ δT ), (6)

where ∗ denotes the complex conjugation.
2) Repeat step 1) for q = q − 1 until z(1)(t) is reached.
For a q-order PPS, in total there are (q − 1) times recursive
computation for step 1). When q = 1, the frequency of the
PPS is a constant, and the PPS is thus a pure-tone. In this
case, the proposed algorithm will degenerate to the “univec-
tor hydrophone ESPRIT” algorithm in [8], and no recursive
computation of steps 1) is required In addition, it can be used
in the multiple-source scenario directly. For details, please
refer to [8].

It is known that for every recursive computation of step 1),
one-order difference-function of the signal’s phase is derived.
Since the phase of the q-order PPS is a q-order polynomial of
t, the (q − 1)-order difference-function is a 1-order polyno-
mial. Thus, z(1)(t) is the 1-order polynomial of t. With some
manipulation:

z(1)(t) = a
(
|[a]i|(2(q−2)−1) [a]∗i

)
×ej(−1)(q−1)

[
f(δT ,bq−1,bq)+(q!)bqδ

(q−1)
T t

]
= a

(
|[a]i|(2(q−2)−1) [a]∗i

)
· ej(−1)(q−1)f(δT ,bq−1,bq)︸ ︷︷ ︸

def
= ã

×ej(−1)(q−1)(q!)bqδ
(q−1)
T t, ∀q ≥ 2; (7)

where [a]i denotes the ith element in a, |[a]i| is the absolute
value of [a]i, q! = 1 × 2 × 3 × · · · × q refers to the factorial
of q, and f(δT , bq−1, bq) is a function of the parameters in
the ( ). Note that f(δT , bq−1, bq) is independent of t, and for
different q, it has different values.

Equation (7) holds in the single-source scenario and also
for the algorithm derived in this section. In the multiple-
source scenario, the algorithm to separate the source-of-
interest should first be used and the proposed algorithm can
then be adopted in a single-source scenario. In the noisy
case, multiplicative noise will be introduced in (6). Equation
(7) will become approximated. When the noise power σ2

increases, the noise will affect the algorithm adversely. With
the fixed PPS at the deterministic DOA, when the degree of
the PPS increases, the repetitions of step 1) will increase.
Thus more multiplicative noise will be introduced, which will
affect the algorithm more seriously.

Introducing another constant time-delay ∆T :

z(1)(t) = ãej(−1)(q−1)(q!)bqδ
(q−1)
T t, (8)

z(1)(t+ ∆T ) = ãej(−1)(q−1)(q!)bqδ
(q−1)
T (t+∆T )

= z(1)(t)e
j(−1)(q−1)(q!)bqδ

(q−1)
T ∆T . (9)

In practical applications, ∆T can be the same as or different
from δT .

The entire 8× 1 data set is:

y
def
=

[
z(1)(t)
z(1)(t+ ∆T )

]
def
=

[
y1

y2

]
=

[
y1

y1e
j(−1)(q−1)bq(q!)δ

(q−1)
T ∆T

]
. (10)

Note that ej(−1)(q−1)bq(q!)δ
(q−1)
T ∆T depends on (i) the

highest-order polynomial-coefficient bq , (ii) the degree of
the polynomial-phase signal q, and (iii) the time-delays
{δT ,∆T }, all of which are constants. Thus, ej(−1)(q−1)bq(q!)δ

(q−1)
T ∆T

is time-independent and will be used as the invariant-factor
in the following ESPRIT [24] algorithm.

Supposing there areN snapshots collected in {z(1)(t), z(1)(t+
∆T )}. Then construct the 8×N data set:

Y
def
= [y(t1),y(t2), · · · ,y(tN )] =

[
Y1

Y2

]
. (11)

The data set Y in (11) can be seen as a data vector based
on the vector ã defined in equation (7) (which is modified
from the array-manifold a). Compute the correlation matrix
of the 8×N data measurements:

YYH =

[
Y1

Y2

] [
YH

1 YH
2

]
=

[
Y1Y

H
1 Y1Y

H
2

Y2Y
H
1 Y2Y

H
2

]
,

and then carry on the eigen-decomposition, where H denotes
conjugate transposition.

Similar to Section III-B in [8], there are two estimates
of the steering vector v̂1 (corresponding to Y1Y

H
1 ), v̂2

(corresponding to Y2Y
H
2 ). Since in the present work,

we only consider the one-source scenario, these two es-
timates are obtained from the eigenvector of YYH asso-
ciated with the largest eigenvalue (v̂1 corresponds to the
top 4 × 1 sub-vector, and v̂2 corresponds to the bottom
4 × 1 sub-vector). They are inter-related by the value
ρ = ej(−1)(q−1)(q!)bqδ

(q−1)
T ∆T , and this ρ can be estimat-

ed by the two estimated steering vectors v̂1, v̂2 through:
ρ̂ = (v̂H1 v̂1)−1v̂H1 v̂2. The qth-order polynomial coefficient
can be estimated by b̂q = ∠ρ̂+2πmb

(−1)(q−1)(q!)δ
(q−1)
T ∆T

, where mb

is an integer and can be determined from a prior knowledge
of the region of bq . After the estimation of DOA, the other
polynomial coefficients can be estimated from the algorithms
derived in the corresponding references. Therefore, ã can



be estimated from v̂1, v̂2 by (within an unknown complex
number c): ˆ̃a = 1

2

(
v̂1 + v̂2

ρ̂

)
= cã.

It is worth noting that the algorithm can be used for an ar-
bitrary degree polynomial-phase signal (i.e, if q = 2, it is an
LFM signal). Given the degree of the polynomial-phase sig-
nal, the algorithm requires no a prior knowledge of the poly-
nomial coefficients. Since the derivation of the matrix-pencil
pair depends solely on the degree of the PPS, the efficacy of
the proposed algorithm is independent of the polynomial co-
efficients of the signal.

It follows that: ûx = [ˆ̃a]1
[ˆ̃a]4

, ûy = [ˆ̃a]2
[ˆ̃a]4

, ûz = [ˆ̃a]3
[ˆ̃a]4

. Lastly,
the direction-of-arrival of the polynomial-phase signal can be
estimated by: α̂ = arccos (ûz) , β̂ = ∠ (ûx + jûy), where ∠
denotes the angle of the following complex number.

3. SOURCE TRACKING

If the source is moving, the DOA of the source will become
time-varying and the array-manifold will change with time.
Therefore (1) becomes:

a(α(t), β(t))
def
=


ux(α(t), β(t))
uy(α(t), β(t))

uz(α(t))
1

 =


sin(α(t)) cos(β(t))
sin(α(t)) sin(β(t))

cos(α(t))
1

 .
With Ts denoting the sampling time interval, consider there
are M time samples. The collected 4×M data set will be:

Z = [z(Ts), z(2Ts), · · · , z(MTs)] , (12)

where z(mTs) = a(α(mTs), β(mTs))s(mTs) + n(mTs),
∀m = 1, 2, · · · ,M .

Consider the first (q+1) data vectors in (12), [z(Ts), z(2Ts),
· · · , z((q + 1)Ts)]. Recall the pre-processing steps of the
data-sets in Section 2 by setting δT = Ts, and presume
the elevation-azimuth angle of the source remains the same
during the time interval (q+ 1)Ts. For a q-order polynomial-
phase signal, perform one more computation of step 1) from
the above (q + 1) data vectors, and in total, there will be q
times computation. The following result will be obtained:

z̆(Ts) = ă(α(Ts), β(Ts))e
j(−1)qbq(q!)T q

s , (13)

ă
def
= a

(
|[a]i|(2(q−1)) [a]∗i

)
. (14)

Similarly, from any (q + 1) contiguous data vectors in (12),
[z(nTs), z((n+ 1)Ts), · · · , z((n+ q)Ts)], we can obtain:
z̆(nTs) = ă(α(nTs), β(nTs))e

j(−1)qbq(q!)T q
s ,∀n = 1, (M−q).

The following problem is to adaptively estimate (α(nTs), β(nTs))
over n = 1, 2, · · · , (M−q), from [z̆(Ts), z̆(2Ts), · · · , z̆((M−
q)Ts)]. The algorithms in [1, 25, 26] can be adopted for the
source-tracking of the polynomial-phase signal. The above
manipulations extract the relation among the (q+ 1) adjacent
data sets for the polynomial-phase signal. The estimate based

on [z̆(Ts), z̆(2Ts), · · · , z̆((M − q)Ts] will thus outperform
the estimate from [z(Ts), z(2Ts), · · · , z(MTs)] directly. The
simulation results in Section 4 verify this point. The follow-
ing reviews the “single-forgetting-factor tracking” algorithm
in [25, 26].

The recursive least-squares algorithm is used for the
source-tracking in [25, 26] as:

ˆ̆a(nTs) =
Re {z̆(nTs)}

Re {[z̆(nTs)]4}
,

âN = [ûx,N , ûy,N , ûz,N , 1]
T

=

∑N
n=0 λ

−n ˆ̆a(nTs)∑N
n=0 λ

−n
,

where λ < 1 denotes a “forgetting factor” and Re{.} denotes
the real-value part of the entity inside {}. It follows that the
recursive relation is obtained:

â(nTs) = λâ(nTs−Ts)+(1−λ)ˆ̆a(nTs), ∀n = 1, 2, · · · , N.

Hence, α̂N = arccos (ûz,N ) , β̂N = ∠ (ûx,N + jûy,N ) .
For the Multiple-Forgetting-Factor (MFF) tracking approach
in [25,26], the described pre-processing technique can also be
adopted.

4. MONTE CARLO SIMULATION
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Fig. 1: Estimation bias and standard deviations of {α, β} with a (a)
2-order, and (b) 4-order PPS versus SNR.
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Fig. 2: Single-forgetting-factor tracking (λ = 0.7) and angular
error of the (a) elevation-angle, and (b) azimuth-angle for a PPS
source. ‘without proposed approach’ means using the method in
[26] directly, and ‘with proposed approach’ denotes incorporating
the proposed pre-processing technique in Section 3.

4.1. Examples for Direction Finding

A 2-order unity power polynomial-phase signal (a.k.a. LFM
or Chirp signal) with {b0 = 0.05, b0 = 0.1, b2 = 0.13} is



Table 1: Angular Error and Standard Deviations of Source Tracking (in degree)
λ1(λ) λ2 λ3 Mean of αr Std. Dev. of αr Mean of βr Std. Dev. of βr

MFF without the proposed technique 0.9 0.8 0.7 −1.021 11.47 0.459 16.09
MFF with the proposed technique 0.9 0.8 0.7 −0.975 11.18 0.700 15.36

SFF without the proposed technique 0.9 − − −0.478 21.55 −1.561 23.18
SFF with the proposed technique 0.9 − − −0.233 3.742 0.200 4.065
SFF without the proposed technique 0.8 − − −0.376 24.45 −0.433 28.00
SFF with the proposed technique 0.8 − − −0.134 1.853 0.071 1.930
SFF without the proposed technique 0.7 − − 0.497 20.89 −0.123 28.17
SFF with the proposed technique 0.7 − − −0.089 1.689 0.187 1.570
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Fig. 3: Multiple-forgetting-factor tracking (λ1 = 0.9, λ2 =
0.8, λ3 = 0.7) and angular error of the (a) elevation-angle, and (b)
azimuth angle for a PPS source.

used in this example. The direction-of-arrival of the source
is {α, β} = {45◦, 60◦}. Figure 1(a) plots the estimation
bias and standard deviations of DOA {α, β} versus signal-
to-noise ratio (SNR) (1/σ2). 1000 trials are used for each
data point on each graph and these estimates use 500 tempo-
ral snapshots. When SNR≥ 15dB, the standard deviations
are very close to Cramér-Rao lower bounds. When the SNR
is low (SNR≤ 10dB), the noise affects the algorithm serious-
ly. Thus there is a visible gap between the standard deviations
and the Cramér-Rao bounds. This is because the multiplica-
tive noise is introduced when equation (6) is used to derive the
data set Y. But when SNR≥ 15dB, the noise effect decreas-
es, hence the estimation standard deviations decrease in par-
allel with the Cramér-Rao bounds when the SNR increases.
Figure 1(b) plots the estimation bias and standard deviations
of {α, β} in a 4-order polynomial-phase signal scenario with
{b0 = 0.05, b0 = 0.1, b2 = 0.13, b3 = 0.23, b4 = 0.29}.

4.2. Examples for Source Tracking

The time-varying elevation-azimuth angle of the 2-order mov-
ing polynomial-phase signal is modeled as: α(nTs) = α0 +
sin(ωαnTs), β(nTs) = β0 + sin(ωβnTs), with (α0, β0) =
(90◦, 180◦), (ωα, ωβ) = (0.01,−0.012), and n = 1, · · · , 1000.
Figure 2 plots the loci of the source’s elevation-angle and
azimuth-angle with the single-forgetting-factor (SFF) track-
ing algorithm (λ = 0.7), at SNR= 20dB. The angular er-
rors of {α, β} are also plotted. Figure 3 plots the loci of
the source’s elevation-azimuth angle and the angular errors
with the multiple-forgetting-factor (MFF) tracking algorithm
(λ1 = 0.9, λ2 = 0.8, λ3 = 0.7). Both the results with and
without the proposed pre-processing technique are presented
in these figures. Table 1 summarizes the angular errors and
standard deviations of elevation-angle αr and azimuth-angle

βr for source tracking with different methods. Qualitative
observations obtained from Table 1 are listed below: 1) Both
the performances of SFF and MFF methods incorporating the
proposed technique in Section 3 are better than their coun-
terparts without incorporating the proposed technique. This
can be seen from the standard deviations of (αr, βr). 2) The
performance of SFF method incorporating the proposed tech-
nique improves significantly in a wide region of λ compared
with its counterpart without incorporating the proposed tech-
nique. The result is even better than the MFF method, both
with and without the proposed technique. 3) For the SFF
algorithm incorporating the proposed technique, the standard
deviations of (αr, βr) decline when λ increases. 4) The per-
formance of MFF method without the proposed technique
is better than the performance of SFF method without the
proposed technique. This is expected and consistent with the
results reported in [26].

It can be seen that with the proposed technique, the
source tracking performance can improve significantly with
less computation workload because the performance of the
SFF approach surpasses those of the other methods. For the
comparison of the computation workload between the SFF
and the MFF methods, please refer to [25].

5. CONCLUSION

An ESPRIT-based algorithm for azimuth-elevation direction-
finding of one broadband polynomial-phase signal with an ar-
bitrary degree is investigated in this paper using a single a-
coustic vector sensor. This is the first time in the literature
to use an acoustic vector sensor to estimate the direction-
of-arrival of a polynomial-phase signal with an arbitrary de-
gree. The adaptive tracking algorithms of both the single-
forgetting-factor approach and the multiple-forgetting-factor
approach are also adapted to incorporate the proposed pre-
precessing technique to track a polynomial-phase signal uti-
lizing one acoustic vector sensor. From the simulation results,
the single-forgetting-factor approach with the proposed pre-
processing technique can provide better performance than its
counterpart without pre-processing technique, and can even
offer better performance than the multiple-forgetting-factor
approach. An electromagnetic counterpart of the algorithm
exists in [18, 27]. However, the proposed algorithmic steps
are fundamentally different from [18, 27] due to the funda-
mental differences between acoustics and electromagnetics.
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